Python零基础入门-11 标准库简介 —— 第二部分

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Python零基础入门-11 标准库简介 —— 第二部分

11. 标准库简介 —— 第二部分

11.1. 格式化输出

reprlib 模块提供了一个定制化版本的 repr() 函数,用于缩略显示大型或深层嵌套的容器对象

pprint 模块提供了更加复杂的打印控制,其输出的内置对象和用户自定义对象能够被解释器直接读取。当输出结果过长而需要折行时,“美化输出机制”会添加换行符和缩进,以更清楚地展示数据结构。


textwrap 模块能够格式化文本段落,以适应给定的屏幕宽度。


locale 模块处理与特定地域文化相关的数据格式。locale 模块的 format 函数包含一个 grouping 属性,可直接将数字格式化为带有组分隔符的样式。

11.2. 模板

string 模块包含一个通用的 Template 类,具有适用于最终用户的简化语法。它允许用户在不更改应用逻辑的情况下定制自己的应用。

11.3. 使用二进制数据记录格式

11.4. 多线程

线程是一种对于非顺序依赖的多个任务进行解耦的技术。多线程可以提高应用的响应效率,当接收用户输入的同时,保持其他任务在后台运行。一个有关的应用场景是,将 I/O 和计算运行在两个并行的线程中。

以下代码展示了高阶的 threading 模块如何在后台运行任务,且不影响主程序的继续运行:

import threading, zipfile

class AsyncZip(threading.Thread):
    def __init__(self, infile, outfile):
        threading.Thread.__init__(self)
        self.infile = infile
        self.outfile = outfile

    def run(self):
        f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
        f.write(self.infile)
        f.close()
        print('Finished background zip of:', self.infile)

background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print('The main program continues to run in foreground.')

background.join()    # Wait for the background task to finish
print('Main program waited until background was done.')

11.5. 日志记录

logging 模块提供功能齐全且灵活的日志记录系统。在最简单的情况下,日志消息被发送到文件或 sys.stderr

import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')


这会产生以下输出:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

默认情况下,informational 和 debugging 消息被压制,输出会发送到标准错误流。其他输出选项包括将消息转发到电子邮件,数据报,套接字或 HTTP 服务器。新的过滤器可以根据消息优先级选择不同的路由方式:DEBUG,INFO,WARNING,ERROR,和 CRITICAL。


日志系统可以直接从 Python 配置,也可以从用户配置文件加载,以便自定义日志记录而无需更改应用程序。

11.6. 弱引用

weakref 模块

11.7. 用于操作列表的工具

array 模块提供了一种 array() 对象,它类似于列表,但只能存储类型一致的数据且存储密集更高。 下面的例子演示了一个以两个字节为存储单元的无符号二进制数值的数组 (类型码为 "H"),而对于普通列表来说,每个条目存储为标准 Python 的 int 对象通常要占用16 个字节:

>>> from array import array
>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array('H', [10, 700])

collections 模块提供了一种 deque()对象,它类似于列表,但从左端添加和弹出的速度较快,而在中间查找的速度较慢。 此种对象适用于实现队列和广度优先树搜索:

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print("Handling", d.popleft())
Handling task1
unsearched = deque([starting_node])
def breadth_first_search(unsearched):
    node = unsearched.popleft()
    for m in gen_moves(node):
        if is_goal(m):
            return m
        unsearched.append(m)

在替代的列表实现以外,标准库也提供了其他工具,例如 bisect 模块具有用于操作有序列表的函数:

>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))
>>> scores
[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

heapq 模块提供了基于常规列表来实现堆的函数。 最小值的条目总是保持在位置零。 这对于需要重复访问最小元素而不希望运行完整列表排序的应用来说非常有用:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data)                      # rearrange the list into heap order
>>> heappush(data, -5)                 # add a new entry
>>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
[-5, 0, 1]

11.8. 十进制浮点运算

decimal 模块提供了一种 Decimal 数据类型用于十进制浮点运算。 相比内置的 float 二进制浮点实现,该类特别适用于

  • 财务应用和其他需要精确十进制表示的用途,


  • 控制精度,
  • 控制四舍五入以满足法律或监管要求,
  • 跟踪有效小数位,
  • 用户期望结果与手工完成的计算相匹配的应用程序。

例如,对70美分话费计算5%税,使用十进制浮点和二进制浮点数计算,会产生的不同结果。如果结果四舍五入到最接近的分数差异会明显:

>>> from decimal import *
>>> round(Decimal('0.70') * Decimal('1.05'), 2)
Decimal('0.74')
>>> round(.70 * 1.05, 2)
0.73


Decimal 表示的结果会保留尾部的零,并根据具有两个有效位的被乘数自动推出四个有效位。 Decimal 可以模拟手工运算来避免当二进制浮点数无法精确表示十进制数时会导致的问题。


精确表示特性使得 Decimal 类能够执行对于二进制浮点数来说不适用的模运算和相等性检测:

>>> Decimal('1.00') % Decimal('.10')
Decimal('0.00')
>>> 1.00 % 0.10
0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False
>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857')
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
2天前
|
机器学习/深度学习 编解码 算法
常用的Python库介绍
Python作为一种功能强大的编程语言,拥有众多的第三方库和框架,这些库和框架覆盖了从数据处理、网络编程、Web开发到人工智能等多个领域。
30 15
|
3天前
|
分布式计算 大数据 Java
如何使用Python的pyodps库来进行跨项目空间重命名表名?
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
28 12
|
2天前
|
存储 监控 数据可视化
【Bokeh 库】Python 中的动态数据可视化
【7月更文挑战第15天】Python的Bokeh库是用于动态数据可视化的利器,它能创建交互式、现代Web浏览器兼容的图表。安装Bokeh只需`pip install bokeh`。基础概念包括Plot、Glyph、数据源和工具。通过示例展示了如何用Bokeh创建动态折线图,包括添加HoverTool。Bokeh还支持散点图、柱状图,可自定义样式和布局,添加更多交互工具,并能构建交互式应用和实时数据流更新。适用于数据探索和实时监控。
18 5
|
8天前
|
SQL 并行计算 API
Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。
Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。
|
8天前
|
机器学习/深度学习 人工智能 数据挖掘
Numba是一个Python库,用于对Python代码进行即时(JIT)编译,以便在硬件上高效执行。
Numba是一个Python库,用于对Python代码进行即时(JIT)编译,以便在硬件上高效执行。
|
8天前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
|
8天前
|
机器人 Shell 开发者
`roslibpy`是一个Python库,它允许非ROS(Robot Operating System)环境(如Web浏览器、移动应用等)与ROS环境进行交互。通过使用`roslibpy`,开发者可以编写Python代码来远程控制ROS节点,发布和订阅话题,以及调用服务。
`roslibpy`是一个Python库,它允许非ROS(Robot Operating System)环境(如Web浏览器、移动应用等)与ROS环境进行交互。通过使用`roslibpy`,开发者可以编写Python代码来远程控制ROS节点,发布和订阅话题,以及调用服务。
|
5天前
|
数据采集 搜索推荐 机器人
Python 神器:wxauto 库
Python 神器:wxauto 库
40 1
|
8天前
|
存储 搜索推荐 算法
`surprise`是一个用于构建和分析推荐系统的Python库。
`surprise`是一个用于构建和分析推荐系统的Python库。
|
8天前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。