以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。

简介: 通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。

常用图表类型及其Python代码示例

在数据分析和可视化过程中,使用合适的图表能够更直观地展示数据特征。Matplotlib和Seaborn是Python中最常用的两个绘图库,提供了丰富的图表类型。本文将介绍一些常用的图表类型,并给出相应的Python代码示例。

一、折线图(Line Plot)

折线图用于显示数据在连续时间段或连续值上的变化趋势。

代码示例

import matplotlib.pyplot as plt
import numpy as np

# 数据
x = np.linspace(0, 10, 100)
y = np.sin(x)

# 绘制折线图
plt.plot(x, y)
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
​

二、柱状图(Bar Plot)

柱状图用于显示不同类别的数据比较。

代码示例

import matplotlib.pyplot as plt

# 数据
categories = ['A', 'B', 'C', 'D']
values = [10, 24, 36, 18]

# 绘制柱状图
plt.bar(categories, values)
plt.title("Bar Plot")
plt.xlabel("Categories")
plt.ylabel("Values")
plt.show()
​

三、散点图(Scatter Plot)

散点图用于显示两个变量之间的关系。

代码示例

import matplotlib.pyplot as plt

# 数据
x = np.random.rand(50)
y = np.random.rand(50)

# 绘制散点图
plt.scatter(x, y)
plt.title("Scatter Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
​

四、直方图(Histogram)

直方图用于显示数据的分布情况。

代码示例

import matplotlib.pyplot as plt

# 数据
data = np.random.randn(1000)

# 绘制直方图
plt.hist(data, bins=30)
plt.title("Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()
​

五、箱线图(Box Plot)

箱线图用于显示数据的分布特征及异常值。

代码示例

import matplotlib.pyplot as plt

# 数据
data = [np.random.normal(0, std, 100) for std in range(1, 4)]

# 绘制箱线图
plt.boxplot(data, vert=True, patch_artist=True)
plt.title("Box Plot")
plt.xlabel("Categories")
plt.ylabel("Values")
plt.show()
​

六、热力图(Heatmap)

热力图用于显示矩阵数据的强度或分布。

代码示例

import seaborn as sns
import numpy as np

# 数据
data = np.random.rand(10, 12)

# 绘制热力图
sns.heatmap(data, annot=True, cmap='coolwarm')
plt.title("Heatmap")
plt.show()
​

七、成对关系图(Pair Plot)

成对关系图用于显示数据集中多个变量之间的关系。

代码示例

import seaborn as sns
import pandas as pd

# 数据
data = sns.load_dataset("iris")

# 绘制成对关系图
sns.pairplot(data, hue="species")
plt.title("Pair Plot")
plt.show()
​

八、饼图(Pie Chart)

饼图用于显示各部分在整体中的比例。

代码示例

import matplotlib.pyplot as plt

# 数据
labels = 'A', 'B', 'C', 'D'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0)  # 突出显示第二部分

# 绘制饼图
plt.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=140)
plt.title("Pie Chart")
plt.show()
​

九、面积图(Area Plot)

面积图用于显示各部分在整体中随时间变化的累积情况。

代码示例

import matplotlib.pyplot as plt
import numpy as np

# 数据
x = np.arange(1, 11)
y1 = np.random.rand(10)
y2 = np.random.rand(10)

# 绘制面积图
plt.fill_between(x, y1, label='Y1')
plt.fill_between(x, y2, label='Y2', alpha=0.5)
plt.title("Area Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.legend()
plt.show()
​

十、雷达图(Radar Chart)

雷达图用于显示多变量数据在多个维度上的表现。

代码示例

import matplotlib.pyplot as plt
import numpy as np

# 数据
labels = np.array(['A', 'B', 'C', 'D', 'E'])
stats = np.array([20, 34, 30, 35, 27])

# 绘制雷达图
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
stats = np.concatenate((stats,[stats[0]]))
angles += angles[:1]

fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.fill(angles, stats, color='blue', alpha=0.25)
ax.plot(angles, stats, color='blue', linewidth=2)
ax.set_yticklabels([])
ax.set_xticks(angles[:-1])
ax.set_xticklabels(labels)
plt.title("Radar Chart")
plt.show()
​

总结

本文介绍了使用Matplotlib和Seaborn库绘制的常用图表类型,包括折线图、柱状图、散点图、直方图、箱线图、热力图、成对关系图、饼图、面积图和雷达图。这些图表能够帮助我们更直观地展示和分析数据。在实际应用中,选择合适的图表类型至关重要,以确保数据的有效传达。

分析说明表

图表类型 用途 代码示例
折线图 显示数据在连续时间段或连续值上的变化趋势 plt.plot(x, y)
柱状图 显示不同类别的数据比较 plt.bar(categories, values)
散点图 显示两个变量之间的关系 plt.scatter(x, y)
直方图 显示数据的分布情况 plt.hist(data, bins=30)
箱线图 显示数据的分布特征及异常值 plt.boxplot(data, vert=True, patch_artist=True)
热力图 显示矩阵数据的强度或分布 sns.heatmap(data, annot=True, cmap='coolwarm')
成对关系图 显示数据集中多个变量之间的关系 sns.pairplot(data, hue="species")
饼图 显示各部分在整体中的比例 plt.pie(sizes, explode=explode, labels=labels)
面积图 显示各部分在整体中随时间变化的累积情况 plt.fill_between(x, y1)
雷达图 显示多变量数据在多个维度上的表现 ax.fill(angles, stats, color='blue', alpha=0.25)

通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。

目录
相关文章
|
6天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
48 20
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
172 77
|
17天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
57 33
|
18天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
40 10
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
52 11
|
7月前
|
Python
python 中*类型对象
【6月更文挑战第9天】
35 2
|
3月前
|
存储 缓存 算法
详解 PyTypeObject,Python 类型对象的载体
详解 PyTypeObject,Python 类型对象的载体
61 3
|
6月前
|
Python
|
7月前
|
Python
Python的类型对象
【6月更文挑战第5天】
37 3
|
7月前
|
Python
Python运算符应用于错误类型的对象
【6月更文挑战第2天】
28 2