Llama3 中文通用Agent微调模型来啦!(附手把手微调实战教程)

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Llama3模型在4月18日公布后,国内开发者对Llama3模型进行了很多训练和适配,除了中文纯文本模型外,多模态版本也陆续在发布中。

前言

Llama3模型在4月18日公布后,国内开发者对Llama3模型进行了很多训练和适配,除了中文纯文本模型外,多模态版本也陆续在发布中。考虑到国内用户对Agent场景的需求,魔搭社区LLM&AIGC模型微调推理框架SWIFT基于Llama3-8b-instruct原始版本训练了通用中文模型,并保留且适配了中文Agent能力,这是开源社区中率先完整适配中文环境的通用Agent Llama3模型,后续会有更完整的评测报告产出。

模型链接:

https://modelscope.cn/models/swift/Llama3-Chinese-8B-Instruct-Agent-v1/summary

使用方式

推荐用户直接使用swift进行推理或部署:

# 安装依赖
pip install ms-swift -U
# 推理
swift infer --model_type llama3-8b-instruct --model_id_or_path swift/Llama3-Chinese-8B-Instruct-Agent-v1
# 部署
swift deploy --model_type llama3-8b-instruct --model_id_or_path swift/Llama3-Chinese-8B-Instruct-Agent-v1

本模型可以联合ModelScopeAgent框架使用,请参考:

https://github.com/modelscope/swift/blob/main/docs/source/LLM/Agent%E5%BE%AE%E8%B0%83%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.md#%E6%90%AD%E9%85%8Dmodelscope-agent%E4%BD%BF%E7%94%A8

也欢迎开发者基于本模型及后续产出的v2或v3版本模型进行二次微调以获取更好的能力。

下面介绍如何使用SWIFT框架训练Llama3中文Agent模型

环境准备

我们使用了魔搭官方框架SWIFT进行模型训练:https://github.com/modelscope/swift/tree/main,开发者如果希望训练Llama3中文版本可以参考下面的安装方式:

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 安装ms-swift
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'
# 环境对齐 (通常不需要运行. 如果你运行错误, 可以跑下面的代码, 仓库使用最新环境测试)
pip install -r requirements/framework.txt  -U
pip install -r requirements/llm.txt  -U

数据准备

为了适配中文及Agent场景,我们针对语料进行了一定混合配比,训练Llama3使用的语料如下:

- COIG-CQIA:

https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary 该数据集包含了中国传统知识、豆瓣、弱智吧、知乎等中文互联网信息

- 魔搭通用Agent训练数据集:

https://modelscope.cn/datasets/AI-ModelScope/ms-agent-for-agentfabric/summary

- alpaca-en:

https://modelscope.cn/datasets/AI-ModelScope/alpaca-gpt4-data-en/summary

- ms-bench魔搭通用中文问答数据集:

https://modelscope.cn/datasets/iic/ms_bench/summary

SWIFT支持很多其他对训练有帮助的开源数据集,如

  • Firefly中文数据集
  • DeepCtrl多语数据集
  • Alpaca/ShareGPT

如开发者希望用其他数据集训练Llama3,只需要在命令行指定--dataset firefly-all-zh等即可使用它们。完整支持的数据集列表可以查看:https://github.com/modelscope/swift/blob/main/docs/source/LLM/%E6%94%AF%E6%8C%81%E7%9A%84%E6%A8%A1%E5%9E%8B%E5%92%8C%E6%95%B0%E6%8D%AE%E9%9B%86.md#%E6%95%B0%E6%8D%AE%E9%9B%86

我们将MLP和Embedder加入了lora_target_modules. 你可以通过指定--lora_target_modules ALL在所有的linear层(包括qkvo以及mlp和embedder)加lora. 这通常是效果最好的。

超参数

lr

5e-5

epoch

2

lora_rank

8

lora_alpha

32

lora_target_modules

ALL

batch_size

2

gradient_accumulation_steps

16

训练使用8卡进行,环境准备完成后,只需要如下命令即可开启训练:

NPROC_PER_NODE=8 \
swift sft \
  --model_type llama3-8b-instruct \
  --dataset ms-agent-for-agentfabric-default alpaca-en ms-bench ms-agent-for-agentfabric-addition coig-cqia-ruozhiba coig-cqia-zhihu coig-cqia-exam coig-cqia-chinese-traditional coig-cqia-logi-qa coig-cqia-segmentfault coig-cqia-wiki \
  --batch_size 2 \
  --max_length 2048 \
  --use_loss_scale true \
  --gradient_accumulation_steps 16 \
  --learning_rate 5e-5 \
  --use_flash_attn true \
  --eval_steps 500 \
  --save_steps 500 \
  --train_dataset_sample -1 \
  --dataset_test_ratio 0.1 \
  --val_dataset_sample 10000 \
  --num_train_epochs 2 \
  --check_dataset_strategy none \
  --gradient_checkpointing true \
  --weight_decay 0.01 \
  --warmup_ratio 0.03 \
  --save_total_limit 2 \
  --logging_steps 10 \
  --sft_type lora \
  --lora_target_modules ALL \
  --lora_rank 8 \
  --lora_alpha 32

为了提高ReACT格式的准确率,我们将部分loss字段的权重提高以保留中文训练中的agent能力表现。

训练后的模型可以在魔搭官网上下载:https://modelscope.cn/models/swift/Llama3-Chinese-8B-Instruct-Agent-v1/summary

推理效果

该模型具备良好的中文问答能力,示例如下:

通用问答:

image.png

image.png

逻辑题:

image.png

image.png

image.png

对联:

image.png

藏头诗:

image.png

古文翻译:

image.png

代码能力:

image.png

评测

我们使用swift的eval命令对训练模型的前后进行了通用能力评测,结果如下:

评测模型

ARC

CEVAL

GSM8K

Llama3-8b-instruct

0.7645

0.5089

0.7475

Llama3-Chinese-8B-Instruct-Agent-v1

0.7577

0.4903

0.652

英文GSM8K能力下降了8个点左右,经过消融实验我们发现去掉alpaca-en语料会导致GSM8K下降至少十个点以上。

开发者也可以使用swift框架对其他模型进行评测,命令非常简单:

swift eval --model_type llama3-8b-instruct --model_id_or_type LLM-Research/Meta-Llama-3-8B-Instruct --infer_backend pt --eval_dataset ceval arc

和ModelScope-Agent联用

在ModelScope-Agent中使用可以参考我们的官方文档:https://github.com/modelscope/swift/blob/main/docs/source/LLM/Agent%E5%BE%AE%E8%B0%83%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.md#%E5%9C%A8%E5%91%BD%E4%BB%A4%E8%A1%8C%E4%B8%AD%E4%BD%BF%E7%94%A8agent 

我们在服务部署后,可以在AgentFabric中校验其接口调用效果,以天气查询为例,可以看到:

image.png

image.png

模型可以按照system要求对查询进行补全。

文生图

image.png

图片解释

image.png

image.png

image.png

image.png

待提升工作

  1. 原版Llama3英文模型具备一定的CoT能力,在训练为中文时引入了一定的知识遗忘问题,此问题在V2版本中会继续解决
  2. 英文预料的比例需要调整,以保证原英文能力(如GSM8K这类敏感指标)

点击直达模型链接

Llama3中文8BAgent模型v1版本 · 模型库 (modelscope.cn)

相关文章
|
2月前
|
前端开发 API 决策智能
多智能体微调实践:α-UMi 开源
近年来,为了加强大型语言模型(Large-Language Models, LLM)实时信息处理、解决专业问题的能力,催生了工具调用智能体(Tool Integrated Agent)概念
|
21天前
|
算法 机器人 Linux
Agent-Based概率模型让多无人机野外搜救更高效
【论文解读】Agent-Based概率模型、Receding Horizon规划策略、动态分区算法相结合,提升多无人机野外搜救效果
69 13
Agent-Based概率模型让多无人机野外搜救更高效
|
4月前
|
存储 人工智能
|
1月前
|
机器学习/深度学习 人工智能 算法
视频生成模型变身智能体:斯坦福Percy Liang等提出VideoAgent,竟能自我优化
斯坦福大学Percy Liang团队推出VideoAgent,一种能生成高质量视频并自我优化的模型。它结合强化学习和监督学习,根据用户反馈和环境变化自动调整,提升视频生成质量和用户体验,但同时也面临模型不稳定性和高资源需求等挑战。
35 6
|
1月前
|
自然语言处理 Python
使用Python和Qwen模型实现一个简单的智能问答Agent
使用Python和Qwen模型实现一个简单的智能问答Agent
121 4
|
2月前
|
人工智能 JSON 自然语言处理
开源模型+Orchestrating Agents多智能体框架,易用、强大且可控
本文采用开源Qwen2.5-14B-instruct-GGUF来体验多智能体编排和交接,希望在体验多智能体编排和交接框架的同时,一起评估中小参数规模的模型(14B)能否较好的完成多智能体任务。
|
3月前
|
监控 Linux
Zabbix 5.0 LTS的agent服务部署实战篇
文章介绍了如何在CentOS 7.6操作系统上部署Zabbix 5.0 LTS版本的agent服务,包括配置软件源、安装agent、修改配置文件、启动服务,并在Zabbix web界面添加监控。
154 4
Zabbix 5.0 LTS的agent服务部署实战篇
|
3月前
|
监控 关系型数据库 MySQL
zabbix agent集成percona监控MySQL的插件实战案例
这篇文章是关于如何使用Percona监控插件集成Zabbix agent来监控MySQL的实战案例。
89 2
zabbix agent集成percona监控MySQL的插件实战案例
|
3月前
|
人工智能 搜索推荐
开闭源模型大乱斗:看看哪个智能体最能窥见人类真实意图
【9月更文挑战第3天】在人工智能领域,理解并执行用户意图是一大挑战。现有模型常因用户模糊指令而难以捕捉真实需求。为此,研究人员提出了“Intention-in-Interaction”(IN3)基准,通过显式查询检验隐式意图,引入Mistral-Interact模型评估任务模糊性、询问并细化用户意图,最终执行任务。该方法显著提升了智能体的理解和执行能力,但依然面临评估主观性、用户信息提供不足及复杂任务处理等挑战。论文详情见:https://arxiv.org/abs/2402.09205
52 2
|
4月前
|
机器学习/深度学习 存储 定位技术
强化学习Agent系列(一)——PyGame游戏编程,Python 贪吃蛇制作实战教学
本文是关于使用Pygame库开发Python贪吃蛇游戏的实战教学,介绍了Pygame的基本使用、窗口初始化、事件处理、键盘控制移动、以及实现游戏逻辑和对象交互的方法。

热门文章

最新文章