AI大模型企业应用实战-为Langchain Agent添加记忆功能

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
视觉智能开放平台,视频资源包5000点
简介: 【8月更文挑战第18天】

0 前言

在开发复杂的AI应用时,赋予Agent记忆能力是一个关键步骤。这不仅能提高Agent的性能,还能使其在多轮对话中保持上下文连贯性。本文将详细介绍如何在Langchain框架中为Agent添加记忆功能,并深入解析每个步骤的原理和最佳实践。

Agent记忆功能的核心组件

在Langchain中,构建具有记忆功能的Agent主要涉及三个核心组件:

  1. 工具(Tools): Agent用来执行特定任务的功能模块。
  2. 记忆(Memory): 存储和检索对话历史的组件。
  3. 大语言模型(LLM): 负责理解输入、决策和生成响应的核心智能体。

这三个组件的协同工作使Agent能够在多轮对话中保持连贯性并做出明智的决策。

1 构建Agent可用工具

首先,我们需要定义Agent可以使用的工具。

# 构建一个搜索工具,Langchain提供的一个封装,用于进行网络搜索。
search = SerpAPIWrapper()
# 创建一个数学计算工具,特殊的链,它使用LLM来解析和解决数学问题。
llm_math_chain = LLMMathChain(
    llm=llm,
    verbose=True
)
tools = [
    Tool(
        name = "Search",
        func=search.run,
        description="useful for when you need to answer questions about current events or the current state of the world"
    ),
    Tool(
        name="Calculator",
        func=llm_math_chain.run,
        description="useful for when you need to answer questions about math"
    ),
]
print(tools)

2 增加memory组件

接下来,我们需要为Agent添加记忆功能。Langchain提供了多种记忆组件,这里我们使用ConversationBufferMemory:

from langchain.memory import ConversationBufferMemory

# 记忆组件
memory = ConversationBufferMemory(
    # 指定了存储对话历史的键名
    memory_key="chat_history",
      # 确保返回的是消息对象,而不是字符串,这对于某些Agent类型很重要
    return_messages=True
)

3 定义agent

现在我们有了工具和记忆组件,可以初始化我们的Agent了:

from langchain.agents import AgentType, initialize_agent

agent_chain = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.OPENAI_FUNCTIONS, 
    verbose=True, 
    handle_parsing_errors=True,
    memory=memory
)

这里的关键点是:

  • AgentType.OPENAI_FUNCTIONS: 这种Agent类型特别适合使用OpenAI的function calling特性。
  • verbose=True: 启用详细输出,有助于调试。
  • handle_parsing_errors=True: 自动处理解析错误,提高Agent的稳定性。
  • memory=memory: 将我们之前定义的记忆组件传递给Agent。

4 查看默认的agents prompt啥样

了解Agent使用的默认提示词模板非常重要,这有助于我们理解Agent的行为并进行必要的调整:

print(agent_chain.agent.prompt.messages)
print(agent_chain.agent.prompt.messages[0])
print(agent_chain.agent.prompt.messages[1])
print(agent_chain.agent.prompt.messages[2])

这将输出Agent使用的默认提示词模板。通常包括系统消息、人类消息提示词模板和AI消息模板。

5 优化Agent配置

为了更好地利用记忆功能,我们需要修改Agent的配置,确保它在每次交互中都能访问对话历史。

需要使用agent_kwargs传递参数,将chat_history传入

agent_chain = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.OPENAI_FUNCTIONS, 
    verbose=True, 
    handle_parsing_errors=True,#处理解析错误
    agent_kwargs={
   
   
        "extra_prompt_messages":[MessagesPlaceholder(variable_name="chat_history"),MessagesPlaceholder(variable_name="agent_scratchpad")],
    },
    memory=memory #记忆组件
    )

这里的关键改变是:

  • agent_kwargs: 通过这个参数,我们可以自定义Agent的行为

  • extra_prompt_messages:我们添加了两个MessagesPlaceholder:

    • chat_history: 用于插入对话历史。
    • agent_scratchpad: 用于Agent的中间思考过程。

这样配置确保了Agent在每次决策时都能考虑到之前的对话内容。

6 验证优化后的提示词模板

最后,让我们检查一下优化后的提示词模板:

print(agent_chain.agent.prompt.messages)
print(agent_chain.agent.prompt.messages[0])
print(agent_chain.agent.prompt.messages[1])
print(agent_chain.agent.prompt.messages[2])

能看到新添加的chat_historyagent_scratchpad占位符。

7 总结

通过以上步骤,我们成功地为Langchain Agent添加了记忆功能。这使得Agent能够在多轮对话中保持上下文连贯性,大大提高了其在复杂任务中的表现。

添加记忆功能只是构建高效Agent的第一步。在实际应用中,你可能需要根据具体需求调整记忆组件的类型和参数,或者实现更复杂的记忆管理策略。

始终要注意平衡记忆的深度和Agent的响应速度。过多的历史信息可能会导致决策缓慢或偏离主题。因此,在生产环境中,你可能需要实现某种形式的记忆修剪或总结机制。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
30天前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
227 2
|
1月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
85 6
|
23天前
|
存储 人工智能 分布式计算
Parquet 文件格式详解与实战 | AI应用开发
Parquet 是一种列式存储文件格式,专为大规模数据处理设计,广泛应用于 Hadoop 生态系统及其他大数据平台。本文介绍 Parquet 的特点和作用,并演示如何在 Python 中使用 Pandas 库生成和读取 Parquet 文件,包括环境准备、生成和读取文件的具体步骤。【10月更文挑战第13天】
172 60
|
1月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
61 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
24天前
|
人工智能 自动驾驶 搜索推荐
【通义】AI视界|苹果AI本周正式上线,将引入四大功能
本文由【通义】自动生成,涵盖苹果AI上线、特斯拉被华尔街重新评估、谷歌开发控制计算机的AI、Meta与路透社合作及Waymo获56亿美元融资等科技动态。点击链接或扫描二维码获取更多信息。
|
22天前
|
人工智能 资源调度 数据可视化
【AI应用落地实战】智能文档处理本地部署——可视化文档解析前端TextIn ParseX实践
2024长沙·中国1024程序员节以“智能应用新生态”为主题,吸引了众多技术大咖。合合信息展示了“智能文档处理百宝箱”的三大工具:可视化文档解析前端TextIn ParseX、向量化acge-embedding模型和文档解析测评工具markdown_tester,助力智能文档处理与知识管理。
|
1月前
|
机器学习/深度学习 人工智能 开发框架
解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。
157 14
|
30天前
|
人工智能 前端开发 JavaScript
前端大模型入门(二):掌握langchain的核心Runnable接口
Langchain.js 是 Langchain 框架的 JavaScript 版本,专为前端和后端 JavaScript 环境设计。最新 v0.3 版本引入了强大的 Runnable 接口,支持灵活的执行方式和异步操作,方便与不同模型和逻辑集成。本文将详细介绍 Runnable 接口,并通过实现自定义 Runnable 来帮助前端人员快速上手。
|
1月前
|
存储 人工智能 搜索推荐
揭秘LangChain+RAG如何重塑行业未来?保姆级实战演练,解锁大模型在各领域应用场景的神秘面纱!
【10月更文挑战第4天】随着AI技术的发展,大型语言模型在各行各业的应用愈发广泛,检索增强生成(RAG)技术成为推动企业智能化转型的关键。本文通过实战演练,展示了如何在LangChain框架内实施RAG技术,涵盖金融(智能风控与投资决策)、医疗(辅助诊断与病历分析)及教育(个性化学习推荐与智能答疑)三大领域。通过具体示例和部署方案,如整合金融数据、医疗信息以及学生学习资料,并利用RAG技术生成精准报告、诊断建议及个性化学习计划,为企业提供了切实可行的智能化解决方案。
61 5