样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

简介: 样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

Boosting算法是一种把若干个分类器整合为一个分类器的方法,也就是一种集成分类方法(Ensemble Method)

计量经济学的视角

可以从计量经济学的角度理解提升方法(Boosting)的内容。

这里的目标是要解决:

损失函数ℓ,以及预测器集合M。这是一个优化问题。这里的优化是在函数空间中进行的,是一个简单的优化问题。从数值的角度来看,优化是用梯度下降来解决的(这就是为什么这种技术也被称为梯度提升)。

同样,最佳值不是某个实值x⋆,而是某个函数m⋆。因此,在这里我们会有类似m

其中右边的式子也可以写成

从后者可以清楚地看到f是我们在剩余残差上拟合的模型。

我们可以这样改写:定义

目标是拟合一个模型,使 ri,k=h⋆(xi),当我们有了这个最优函数。设 mk(x)=mk-1(x)+γkh⋆(x)。

这里有两个重要点。

首先,我们拟合一个模型,通过一些协变量 x来解释 y。然后考虑残差 ε,并以相同的协变量 x来解释它们。如果你尝试用线性回归,你会在第1步结束时完成,因为残差 ε与协变量  x是正交的:我们没有办法从它们那里学习。在这里它是有效的,因为我们考虑的是简单的非线性模型。而实际上,可以使用的东西是添加一个收缩参数。不要考虑 ε=y-m(x),而是 ε=y-γm(x) 。弱学习的概念在这里是极其重要的。我们收缩得越多,花的时间就越长。不断从错误中学习是件好事。但从启发式的角度来看,当我们开始过度拟合时,我们应该停止。而这可以通过对初始数据集进行分割训练验证或使用交叉验证来观察。

样条曲线

我们尝试用样条曲线来学习。因为标准的样条曲线有固定的结点,

在这里,我们将(以某种方式)优化结点位置。为了说明问题,这里使用的是高斯回归,而不是分类。考虑以下数据集(只有一个协变量):

对于结点的最佳选择,我们可以使用

lsgen(x, y, degree = 1, numknot = 2)

在5%的收缩参数下,代码简单如下

v=.05
fit=lm(y~bs(x,degree=1,knots=optknot))
yp=predict(fit,newdata=df)
 yr= y - v*yp
YP=v*yp
for(t in 1:200){
fit=lm(yr~bs(x,degree=1,knots= optknot) )
 
 
plot(  x,  y,ylab="",xlab="")
lines(  x,y,type="l" )

为了直观地看到100次迭代的结果,使用动态可视化

viz(100)

图1

很明显,我们看到,在这里从数据中学习。

决策回归树

我们尝试一下别的模型。如果我们在每一步都考虑决策树,而不是线性逐步回归(这是用线性样条考虑的)。

v=.1 
rpart(y~x,data=df)
yp=predict(fit)
 yr= y -  yp
YP=v*yp
for(t in 1:100){
 predict(fit,newdata=df)

同样,为了将学习过程动态可视化,使用

plot( x, y,ylab="",xlab="")
lines( x,y,type="s"
fit=rpart(y~x,data=df)

图2

这一次,通过这些树我们不仅有一个好的模型,而且与我们使用单一的回归树所能得到的模型不同。

如果我们改变收缩参数呢?


为了直观地看到收缩参数改变的结果,使用动态可视化

viz=function(v=0.05)
 f$yr=df$y -v*yp
 YP=v*yp
 for(t in 1:100){
 yp=predict(fit,newdata=df)
 yr= yr - v*yp
 lines(df$x,y,type="s"

图3

显然,这个收缩参数有影响。它必须很小才能得到一个好的模型。这就是使用弱学习来获得好的预测的想法。

分类和Adaboost

现在我们了解了bootsting的工作原理,并把它用于分类。这将更加复杂,因为残差在分类中通常信息量不大,而且它很难缩减。因此,让我们尝试一些稍微不同的方法,来介绍adaboost算法,AdaBoost是最著名的Boosting族算法。

在我们最初的讨论中,目标是最小化一个凸的损失函数。在这里,如果我们把类表示为{-1,+1},我们考虑的损失函数是 (与逻辑模型相关的损失函数是

我们在这里所做的与梯度下降(或牛顿算法)有关。之前,我们是从误差中学习的。在每个迭代中,计算残差,并对这些残差拟合一个(弱)模型。这个弱模型的贡献被用于梯度下降优化过程。

这里的情况会有所不同,因为更难使用残差,空残差在分类中从不存在。所以我们将增加权重。最初,所有的观察值都有相同的权重。但是,迭代之后,我们将增加预测错误的个体的权重,减少预测正确的个体的权重。

我们从ω0=1n开始,然后在每一步拟合一个模型(分类树),权重为ωk(我们没有讨论树的算法中的权重,但实际上在公式中是很直接的)。让hωk表示该模型(即每个叶子里的概率)。然后考虑分类器 ,它返回一个在{-1,+1}的值。然后设

Ik是被错误分类的个体集合。

然后设置

并在最后更新模型时使用

以及权重

除以总和,以确保总和是1。如前所述,我们可以包括一些收缩参数。为了直观地看到这个过程的收敛性,我们将在我们的数据集上绘制总误差。

for(i in 1:n_iter)rfit = rpart(y~., x, w, method="class")
g = -1 + 2*(predict(rfit,x)\[,2\]>.5) 
e = sum(w*(y*>0))
error\[i\] = mean(1\*f\*y<0)
plot(seq(1,n_iter),error

图4


在这里,我们面临一个机器学习中的经典问题:我们有一个完美的模型,误差为零。用多项式拟合:有10个观察值,9度的多项式,拟合很好。将我们的数据集一分为二,一个训练数据集,一个验证数据集。

train\_car = car\[id\_train,\]
test\_car= car\[-id\_train,\]

我们在第一个模型上构建模型,并在第二个模型上检查

for(i in 1:n_iter){
  rfit = rpart(y\_train~., x\_train, w_train, method="class")
  train\_error\[i\] = mean(1\*f\_train\*y_train&lt;0)
  test\_error\[i\] = mean(1\*f\_test\*y_test&lt;0)}
plot(seq(1,n\_iter),test\_error)

图5


在这里,和以前一样,经过80次迭代,我们在训练数据集上有一个不错的模型,但在验证数据集上表现得很差。在20次迭代后,效果比较好。

R函数:梯度提升(_GBM_)算法

也可以使用R函数。

gbm(y~ .,n.trees = 200,shrinkage = .01,cv.folds = 5

这里考虑的是交叉验证,而不是训练验证,以及用得是森林而不是单棵树,当然,输出要好得多(这里收缩参数是一个非常小的参数,而且学习非常慢)。

图6

相关文章
|
2月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
185 4
|
5月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
134 2
|
7月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
7月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
183 17
|
7月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
172 7
|
6月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
|
9月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
284 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
9月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
236 3
 算法系列之数据结构-Huffman树
|
9月前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。
|
10月前
|
算法 图形学 数据安全/隐私保护
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。

热门文章

最新文章