R语言聚类算法的应用实例

简介: R语言聚类算法的应用实例

一家批发经销商想将发货方式从每周五次减少到每周三次,简称成本,但是造成一些客户的不满意,取消了提货,带来更大亏损,项目要求是通过分析客户类别,选择合适的发货方式,达到技能降低成本又能降低客户不满意度的目的。


什么是聚类

聚类将相似的对象归到同一个簇中,几乎可以应用于所有对象,聚类的对象越相似,聚类效果越好。聚类与分类的不同之处在于分类预先知道所分的类到底是什么,而聚类则预先不知道目标,但是可以通过簇识别(cluster identification)告诉我们这些簇到底都是什么。


K-means

聚类的一种,之所以叫k-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。簇个数k是用户给定的,每一个簇通过质心来描述。

k-means的工作流程是:

  • 随机确定k个初始点做为质心
  • 给数据集中的每个点找距其最近的质心,并分配到该簇
  • 将每个簇的质心更新为该簇所有点的平均值
  • 循环上两部,直到每个点的簇分配结果不在改变为止


项目流程

载入数据集

import pandas as pd 
data = pd.read_csv("customers.csv");

分析数据

显示数据的一个描述

from IPython.display import display
 display(data.discrie());

分析数据是一门学问,感觉自己在这方面还需要多加练习,数据描述包含数据总数,特征,每个特征的均值,标准差,还有最小值、25%、50%、75%、最大值处的值,这些都可以很容易列出来,但是透过这些数据需要看到什么信息,如何与需求目的结合,最开始还是比较吃力的。可以先选择几个数值差异较大的样本,然后结合数据描述和需求,对数据整体有一个把控。比如在Udacity的第三个项目中,给出客户针对不同类型产品的年度采购额,分析猜测每个样本客户的类型。

数据描述

三个样本客户

  样本客户

每个客户究竟是什么类型,这个问题困扰我好久,第一次回答我只是看那个方面采购额最大,就给它一个最近的类型,提交项目后Reviewer这样建议:

恍然大悟,这才知道了该如何分析一份数据集,于是有了下面的回答


回答

所以分析数据一定要结合统计数据,四分位数和均值可以看做数据的骨架,能够一定程度勾勒出数据的分布,可以通过箱线图来可视化四分位数。


分析特征相关性

特征之间通常都有相关性,可以通过用移除某个特征后的数据集构建一个监督学习模型,用其余特征预测移除的特征,对结果进行评分的方法来判断特征间的相关性。比如用决策树回归模型和R2分数来判断某个特征是否必要。

如果是负数,说明该特征绝对不能少,因为缺少了就无法拟合数据。如果是1,表示少了也无所谓,有一个跟它相关联的特征能代替它,如果是0到1间的其他数,则可以少,只是有一定的影响,越靠近0,影响越大。

也可以通过散布矩阵(scatter matrix)来可视化特征分布,如果一个特征是必须的,则它和其他特征可能不会显示任何关系,如果不是必须的,则可能和某个特征呈线性或其他关系。


散布矩阵图举例

数据预处理

(一)特征缩放如果数据特征呈偏态分布,通常进行非线性缩放。

可以发现散布矩阵变成了下图

特征缩放后的散布矩阵

(二)异常值检测通常用Tukey的定义异常值的方法检测异常值。

移除异常值需要具体情况具体考虑,但是要谨慎,因为我们需要充分理解数据,记录号移除的点以及移除原因。可以用counter来辅助寻找出现次数大于1的离群点。

(三)特征转换特征转换主要用到主成分分析发,请查看之前介绍。


聚类

有些问题的聚类数目可能是已知的,但是我们并不能保证某个聚类的数目对这个数据是最优的,因为我们对数据的结构是不清楚的。但是我们可以通过计算每一个簇中点的轮廓系数来衡量聚类的质量。数据点的轮廓系数衡量了分配给它的簇的相似度,范围-1(不相似)到1(相似)。平均轮廓系数为我们提供了一种简单地度量聚类质量的方法。下面代码会显示聚类数为2时的平均轮廓系数,可以修改n_clusters来得到不同聚类数目下的平均轮廓系数。

相关文章
|
2月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
118 18
|
2月前
|
监控 算法 JavaScript
公司局域网管理视域下 Node.js 图算法的深度应用研究:拓扑结构建模与流量优化策略探析
本文探讨了图论算法在公司局域网管理中的应用,针对设备互联复杂、流量调度低效及安全监控困难等问题,提出基于图论的解决方案。通过节点与边建模局域网拓扑结构,利用DFS/BFS实现设备快速发现,Dijkstra算法优化流量路径,社区检测算法识别安全风险。结合WorkWin软件实例,展示了算法在设备管理、流量调度与安全监控中的价值,为智能化局域网管理提供了理论与实践指导。
88 3
|
2月前
|
存储 监控 算法
基于 C# 时间轮算法的控制局域网上网时间与实践应用
在数字化办公与教育环境中,局域网作为内部网络通信的核心基础设施,其精细化管理水平直接影响网络资源的合理配置与使用效能。对局域网用户上网时间的有效管控,已成为企业、教育机构等组织的重要管理需求。这一需求不仅旨在提升员工工作效率、规范学生网络使用行为,更是优化网络带宽资源分配的关键举措。时间轮算法作为一种经典的定时任务管理机制,在局域网用户上网时间管控场景中展现出显著的技术优势。本文将系统阐述时间轮算法的核心原理,并基于 C# 编程语言提供具体实现方案,以期深入剖析该算法在局域网管理中的应用逻辑与实践价值。
60 5
|
2月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
72 2
|
3月前
|
存储 监控 算法
公司员工电脑监控软件剖析:PHP 布隆过滤器算法的应用与效能探究
在数字化办公的浪潮下,公司员工电脑监控软件成为企业管理的重要工具,它能够帮助企业了解员工的工作状态、保障数据安全以及提升工作效率。然而,随着监控数据量的不断增长,如何高效地处理和查询这些数据成为了关键问题。布隆过滤器(Bloom Filter)作为一种高效的概率型数据结构,在公司员工电脑监控软件中展现出独特的优势,本文将深入探讨 PHP 语言实现的布隆过滤器算法在该软件中的应用。
73 1
|
4月前
|
存储 监控 算法
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
97 3
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
194 9
|
10月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化