52个AIGC视频生成算法模型介绍(上)

简介: 52个AIGC视频生成算法模型介绍(上)



基于Diffusion模型的AIGC生成算法日益火热,其中文生图,图生图等图像生成技术普遍成熟,很多算法从业者开始从事视频生成算法的研究和开发,原因是视频生成领域相对空白。



AIGC视频算法发展现状

从2023年开始,AIGC+视频的新算法层出不穷,其中最直接的是把图像方面的成果引入视频领域,并结合时序信息去生成具有连续性的视频。随着Sora的出现,视频生成的效果又再次上升了一个台阶,因此有必要将去年一年到现在的视频领域进展梳理一下,为以后的视频方向的研究提供一点思路。

AIGC视频算法分类


AIGC视频算法,经过梳理发现,可以大体分为:文生视频,图生视频,视频编辑,视频风格化,人物动态化,长视频生成等方向。具体的输入和输出形式如下:

  1. 文生视频:输入文本,输出视频
  2. 图生视频:输入图片(+控制条件),输出视频
  3. 视频编辑:输入视频(+控制条件),输出视频
  4. 视频风格化:输入视频,输出视频
  5. 人物动态化:输入图片+姿态条件,输出视频
  6. 长视频生成:输入文本,输出长视频



具体算法梳理


 文生视频


  • CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers


机构:清华时间:2022.5.29https://github.com/THUDM/CogVideo.简单介绍:基于两阶段的transformer(生成+帧间插值)来做文生视频

  • IMAGEN VIDEO


机构:Google时间:2022.10.5简单介绍:基于google的Imagen来做的时序扩展,而Imagen和Imagen video都没有开源

  • Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators


机构:Picsart AI Resarch

时间:2023.3.23

https://github.com/Picsart-AI-Research/Text2Video-Zero

简单介绍:基于图像diffusion model引入corss-frame attention来做时序建模,其次通过显著性检测来实现背景平滑。

  • MagicVideo: Efficient Video GenerationWith Latent Diffusion Models


机构:字节

时间:2023.5.11

简单介绍:直接将图像SD架构扩展成视频,增加了时序信息


  • AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning


机构:上海 AI Lab

时间:2023.7.11

https://animatediff.github.io/

简单介绍:基于图像diffusion model,训练一个运动建模模块,来学习运动信息


  • VideoCrafter1: Open Diffusion Models for High-Quality Video Generation


机构:腾讯 AI Lab

时间:2023.10.30

https://ailab-cvc.github.io/videocrafter

简单介绍:基于diffusion模型,网络架构采用空间和时序attention操作来实现视频生成


 图生视频


  • AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning


机构:上海 AI Lab

时间:2023.7.11

https://animatediff.github.io/


  • VideoCrafter1: Open Diffusion Models for High-Quality Video Generation


机构:腾讯 AI Lab

时间:2023.10.30

https://ailab-cvc.github.io/videocrafter


  • stable video diffusion


机构:Stability AI

时间:2023.11.21

https://stability.ai/news/stable-video-diffusion-open-ai-video-model

简单介绍:基于SD2.1增加时序层,来进行视频生成


  • AnimateZero: Video Diffusion Models are Zero-Shot Image Animators


机构:腾讯 AI Lab

时间:2023.12.6

https://github.com/vvictoryuki/AnimateZero(未开源)

简单介绍:基于Animate Diff增加了位置相关的attention


  • AnimateAnything: Fine-Grained Open Domain Image Animation with Motion Guidance


机构:阿里

时间:2023.12.4

https://animationai.github.io/AnimateAnything/

简单介绍:可以针对特定位置进行动态化,通过学习运动信息实现时序信息生成


  • LivePhoto: Real Image Animation with Text-guided Motion Control


机构:阿里

时间:2023.12.5

https://xavierchen34.github.io/LivePhoto-Page/(未开源)

简单介绍:将参考图,运动信息拼接作为输入,来进行图像的动态化


 视频风格化


  • Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation


机构:南洋理工

时间:2023.12.17

https://www.mmlab-ntu.com/project/rerender/

简单介绍:基于SD+controlnet,结合cros-frame attention来风格化视频序列


  • DCTNet


机构:阿里达摩院

时间:2022.7.6

https://github.com/menyifang/DCT-Net/

简单介绍:基于GAN的框架做的视频风格化,目前支持7种不同的风格


 视频编辑


主要是将深度图或者其他条件图(canny/hed),通过网络注入Diffusion model中,控制整体场景生成,并通过prompt设计来控制主体目标的外观。其中controlnet被迁移进入视频编辑领域,出现了一系列controlnetvideo的工作。


  • Structure and Content-Guided Video Synthesis with Diffusion Models


机构:Runway

时间:2023.2.6

https://research.runwayml.com/gen1


  • Animate diff+ControlNet(基于WebUI API)


  • Video-P2P: Video Editing with Cross-attention Control


机构:港中文,adobe

时间:2023.3.8

https://video-p2p.github.io/


52个AIGC视频生成算法模型介绍(中):https://developer.aliyun.com/article/1480688

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
21天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
108 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1月前
|
机器学习/深度学习 数据采集 算法
如何在一夜之间成为模型微调大师?——从零开始的深度学习修炼之旅,让你的算法功力飙升!
【10月更文挑战第5天】在机器学习领域,预训练模型具有强大的泛化能力,但直接使用可能效果不佳,尤其在特定任务上。此时,模型微调显得尤为重要。本文通过图像分类任务,详细介绍如何利用PyTorch对ResNet-50模型进行微调,包括环境搭建、数据预处理、模型加载与训练等步骤,并提供完整Python代码。通过调整超参数和采用早停策略等技巧,可进一步优化模型性能。适合初学者快速上手模型微调。
91 8
|
1月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
26 4
|
2月前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
2月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
300 1