R语言Apriori算法关联规则对中药用药复方配伍规律药方挖掘可视化(下)

简介: R语言Apriori算法关联规则对中药用药复方配伍规律药方挖掘可视化(下)

R语言Apriori算法关联规则对中药用药复方配伍规律药方挖掘可视化(上):https://developer.aliyun.com/article/1496501


查看最高的支持度样本规则


ules::inspect(head(rules


查看最高置信度样本规则


sort(rules, by="confidenc
nspect(head(rules

sort(rules, by="lift


得到有价值规则子集


rules,subset=confidence>0.3 & support>0.2 & lift>=1
summary(x)


按照支持度排序


sort(x,by="support


按照置信度排序


inspect(sort(x,by="confide

对有价值的x集合进行数据可视化。

method="grouped")


组合挖掘


at(dat1,parameter=list(support=0.22,minlen=3,maxle

得到频繁规则挖掘


nspect(frequents

查看求得的频繁项集


nspect(sort(frequentsets,by="sup

根据支持度对求得的频繁项集排序并查看(等价于inspect(sort(frequentsets)[1:10])


建立模型


apriori(dat1,parameter=list(support=0.24

设置支持度为0.01,置信度为0.3。

summary(rules)#查看规则


查看部分规则


查看置信度、支持度和提升度


可视化


从该图可以看到支持度和置信度的关系,提升度越高置信度也越高。


查看最高的支持度样本规则



查看最高置信度样本规则



查看最高提升度样本规则


confidence>0.3 & support>0.3 & lift>=1)    #得到有价值规则子集
summary(x)

aspect(sort(x,by="support"))    #按照支持度排序
##    lhs            rhs    support   confidence lift     
## 45 {川芎,黄芪} => {地龙} 0.3189655 0.7872340  1.602090  
## 43 {地龙,黄芪} => {川芎} 0.3189655 0.9024390  1.586105  
## 44 {川芎,地龙} => {黄芪} 0.3189655 0.8043478  1.481021  
## 42 {川芎,黄芪} => {当归} 0.3103448 0.7659574  1.615474  
## 41 {川芎,当归} => {黄芪} 0.3103448 0.8181818  1.506494  
## 40 {当归,黄芪} => {川芎} 0.3103448 0.8571429  1.506494  
## 37 {当归,地龙} => {川芎} 0.3017241 0.9210526  1.618820  
## 38 {川芎,当归} => {地龙} 0.3017241 0.7954545  1.618820  
## 39 {川芎,地龙} => {当归} 0.3017241 0.7608696  1.604743
pect(sort(x,by="confidence"))    #按照置信度排序
##    lhs            rhs    support   confidence lift     
## 37 {当归,地龙} => {川芎} 0.3017241 0.9210526  1.618820  
## 43 {地龙,黄芪} => {川芎} 0.3189655 0.9024390  1.586105  
## 40 {当归,黄芪} => {川芎} 0.3103448 0.8571429  1.506494  
## 41 {川芎,当归} => {黄芪} 0.3103448 0.8181818  1.506494  
## 44 {川芎,地龙} => {黄芪} 0.3189655 0.8043478  1.481021  
## 38 {川芎,当归} => {地龙} 0.3017241 0.7954545  1.618820  
## 45 {川芎,黄芪} => {地龙} 0.3189655 0.7872340  1.602090  
## 42 {川芎,黄芪} => {当归} 0.3103448 0.7659574  1.615474  
## 39 {川芎,地龙} => {当归} 0.3017241 0.7608696  1.604743


对有价值的x集合进行数据可视化


相关文章
|
4月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
174 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
【优秀python web系统毕设】基于python的全国招聘数据分析可视化系统,包括随机森林算法
本文介绍了一个基于Python的全国招聘数据分析可视化系统,该系统利用数据挖掘技术、随机森林算法和数据可视化技术,从招聘网站抓取数据,进行处理、分析和预测,帮助用户洞察招聘市场,为求职者和企业提供决策支持。
204 2
|
2月前
|
数据可视化 搜索推荐 Python
Leecode 刷题笔记之可视化六大排序算法:冒泡、快速、归并、插入、选择、桶排序
这篇文章是关于LeetCode刷题笔记,主要介绍了六大排序算法(冒泡、快速、归并、插入、选择、桶排序)的Python实现及其可视化过程。
21 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于python 机器学习算法的二手房房价可视化和预测系统
文章介绍了一个基于Python机器学习算法的二手房房价可视化和预测系统,涵盖了爬虫数据采集、数据处理分析、机器学习预测以及Flask Web部署等模块。
145 2
基于python 机器学习算法的二手房房价可视化和预测系统
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于Python flask的豆瓣电影数据分析可视化系统,功能多,LSTM算法+注意力机制实现情感分析,准确率高达85%
本文介绍了一个基于Python Flask框架的豆瓣电影数据分析可视化系统,该系统集成了LSTM算法和注意力机制进行情感分析,准确率高达85%,提供了多样化的数据分析和情感识别功能,旨在帮助用户深入理解电影市场和观众喜好。
159 0
|
4月前
|
监控 数据可视化 算法
基于朴素贝叶斯算法的微博舆情监控系统,flask后端,可视化丰富
本文介绍了一个基于朴素贝叶斯算法和Python技术栈的微博舆情监控系统,该系统使用Flask作为后端框架,通过数据爬取、清洗、情感分析和可视化等手段,为用户提供丰富的舆情分析和监测功能。
|
5月前
|
Dart 算法 数据可视化
用flutter实现五种寻路算法的可视化效果,快来看看!
半年前我写了一篇有关排序算法可视化的文章,挺有意思,还被张风捷特烈-张老师收录进了FlutterUnit,今天让我们再来做一个有关寻路算法的可视化效果吧!
|
6月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】Apriori算法在关联规则学习中的应用
【机器学习】Apriori算法在关联规则学习中的应用
104 0
|
6月前
|
算法 数据可视化 Python
【KMeans】Python实现KMeans算法及其可视化
【KMeans】Python实现KMeans算法及其可视化
下一篇
DataWorks