R语言LASSO特征选择、决策树CART算法和CHAID算法电商网站购物行为预测分析

简介: R语言LASSO特征选择、决策树CART算法和CHAID算法电商网站购物行为预测分析

全文链接:http://tecdat.cn/?p=32275


本文通过分析电子商务平台的用户购物行为,帮助客户构建了一个基于决策树模型的用户购物行为预测分析模型点击文末“阅读原文”获取完整代码数据


该模型可以帮助企业预测用户的购物意愿、购物频率及购买金额等重要指标,为企业制定更有针对性的营销策略提供参考。


数据来源和处理


本研究所使用的数据来自某电子商务平台的用户购物历史记录。


读取数据


head(data)


模型构建


在本文中,我们选择了决策树和LASSO模型作为分析工具。决策树是一种常见的机器学习算法,它能够根据数据的特征变量将数据分成不同的类别,并找到最佳的划分方式。LASSO模型通过构造一个惩罚函数得到一个较为精炼的模型,使得它压缩一些回归系数,即强制系数绝对值之和小于某个固定值;同时设定一些回归系数为零。因此保留了子集收缩的优点,是一种处理具有复共线性数据的有偏估计。


决策树


df2$Is_Buy_30


变量类型设置


df2$Is_Buy_30 =as.factor(df2$Is_Buy_30 )  
df2$T_weekday =as.factor(df2$T_weekday)  
df2$T_hour=as.numeric(df2$T_hour)  
df2$city_tier=as.numeric(df2$city_tier)


设置权重


df2$weight[df2$Is_Buy_30==1]=7
df2$weight[df2$Is_Buy_30==0]=4


建立决策树:是否购买


result=list(0)  
CARTmodelfunc=function(model){  
  CARTmodel = rpart(model, data=df2 , method="class",weights = df2$weig
## 绘制决策树  
## 输出决策树cp值
  
  
  prune(CARTmodel, cp= CARTmodel$cptable[which.min(CARTmodel$cptable[,"xerror"]),"CP"])  #剪枝  
   
  CARTmodel2 <- prune(CARTmodel, cp=cp); #对树进行剪枝
  
  #对数据进行预测  
   
   
  set.seed(1)  
  #获得训练集  
  df2.train <- df2[train, ]  
  #测试集  
  df2.test <- df2[-train, ]  
  #预测数据  
  tree.pred= (predict(CARTmodel2,df2.test ,type = "class"))
  
  
  confusionmatrix=table(tree.pred,df2.test$Is_Buy_30),#得到训练集混淆矩阵
  
  
  MSE=mean((as.numeric(tree.pred) - as.numeric(df2.test$Is_Buy_30))^


使用lasso算法进行筛选变量


#获得训练集
train <- sample(1:nrow(df2), nrow(df2)*0.8)
t)]), alpha = 1)  
plot(cv.lasso)

点击标题查阅往期内容


PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像


01

02

03

04


coef(cv.lasso,s="lambda.1se")

根据lasso筛选出最优的变量


chaid 树


ctreemodelfucntion=function(modelformula){  
  index=sample(1:nrow(df2),nrow(df2)*0.6)  
  df2.train=df2[index,]  
  df2.test=df2[index,]
  
  
  confusionmatrix=table(tree.pred2,df2.test$Is_Buy_30)#得到训练集混淆矩阵
  
  
  #预测为1类的正确率  
    presicion=tab[2,2]/sum(tab[,2]),  
    # [1] 0.3993589  
    #预测为1类的召回率  
    recall=tab[2,2]/sum(tab[2,]),  
    # [1] 0.6826484  
     
    #mse  
    MSE=mean((as.numeric(tree.pred2) - as.numeric(df2.test$Is_Buy_30))^2),

chaid tree LASSO 算法


可视化树状图:


混淆矩阵

混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。


将x表写进数据库里


sqlSave(channel,result2_loss22,rownames = "result2_loss22",addPK = TRUE)


CART tree LASSO 算法


绘制决策树

resultlasso2=CARTmodelfunc(modelformulalasso)

模型结果:

混淆矩阵

混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。

resultlasso2

# 将x表写进数据库里  
sqlSave(channel,result_rfm,rownames = "result_rfm",addPK = TRUE)
相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
机器学习/深度学习 算法 Python
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。本文详细介绍了随机森林的工作原理、性能优势、影响因素及调优方法,并提供了Python实现示例。适用于分类、回归及特征选择等多种应用场景。
64 7
|
8月前
|
机器学习/深度学习 存储 算法
用kNN算法诊断乳腺癌--基于R语言
用kNN算法诊断乳腺癌--基于R语言
|
5月前
|
机器学习/深度学习 运维 算法
|
4月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
100 0
|
5月前
|
机器学习/深度学习 运维 算法
|
5月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
102 1
|
7月前
|
机器学习/深度学习 数据采集 存储
算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全
**摘要:** 这篇文章介绍了决策树作为一种机器学习算法,用于分类和回归问题,通过一系列特征测试将复杂决策过程简化。文章详细阐述了决策树的定义、构建方法、剪枝优化技术,以及优缺点。接着,文章讨论了集成学习,包括Bagging、Boosting和随机森林等方法,解释了它们的工作原理、优缺点以及如何通过结合多个模型提高性能和泛化能力。文中特别提到了随机森林和GBDT(XGBoost)作为集成方法的实例,强调了它们在处理复杂数据和防止过拟合方面的优势。最后,文章提供了选择集成学习算法的指南,考虑了数据特性、模型性能、计算资源和过拟合风险等因素。
90 0
算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全