matlab中使用VMD(变分模态分解)对信号去噪

简介: matlab中使用VMD(变分模态分解)对信号去噪


拨号音信号的变模分解

创建一个以4 kHz采样的信号,类似于拨打数字电话的所有键。将信号另存为MATLAB®时间数据。

fs = 4e3;
t = 0:1/fs:0.5-1/fs;

绘制时间表的变分模态分解。

多分量信号的VMD

生成由频率为2 Hz,10 Hz和30 Hz的三个正弦波组成的多分量信号。正弦波以1 kHz采样2秒。将信号嵌入方差为0.01²的高斯白噪声中。

计算噪声信号的IMF,并在3-D图中可视化它们。

plot3(p,q,imf)
grid on
xlabel('Time Values')
ylabel('Mode Number')
zlabel('Mode Amplitude')

使用计算出的IMF绘制多分量信号的希尔伯特频谱。将频率范围限制为[0,40] Hz。

分段信号的VMD

生成一个由二次趋势,线性调频信号和余弦组成的分段复合信号,在_t_  = 0.5时,两个恒定频率之间会发生急剧过渡  。

x(t)= 6t2 + cos(4πt+10πt2)+ {cos(60πt),cos(100πt-10π),t≤0.5,t> 0.5。

信号以1 kHz采样1秒。绘制每个单独的分量和复合信号。

plot(t,6*t.^2)
xlabel('Time (s)')
ylabel('Quadratic trend')
nexttile(5,\[1 2\])
plot(t,x)
xlabel('Time (s)')
ylabel('Signal')

执行变分模态分解以计算四个本征模式函数。信号的四个不同分量得以恢复。

通过添加模式函数和残差来重构信号。绘制并比较原始信号和重构信号。

plot(t,x,':','LineWidth',2)
xlabel('Time (s)')
ylabel('Signal')
hold off
legend('Reconstructed signal','Original signal', ...
       'Location','northwest')

计算原始信号与重构信号之间的差异的范数。

使用VMD从ECG信号中去除噪声

在此示例中标记的信号来自MIT-BIH心律失常数据库    (信号处理工具箱)。数据库中的信号以360 Hz采样。

加载与记录200相对应的MIT数据库信号并绘制该信号。

plot(tm,ecgsig)
ylabel('Time (s)')
xlabel('Signal')

ECG信号包含由心跳的节奏和振荡的低频模式驱动的尖峰。ECG的不同辐条会产生重要的高次谐波。

计算开窗信号的九种固有模式函数,可视化IMF。

第一种模式包含最多的噪声,第二种模式以心跳的频率振荡。通过将除第一个和最后一个VMD模式之外的所有模式相加,构造一个干净的ECG信号,从而丢弃低频基线振荡和大部分高频噪声。

相关文章
|
2月前
|
机器学习/深度学习
利用matlab提取出频域和时域信号的29个特征
利用matlab提取出频域和时域信号的29个特征
|
2月前
|
机器学习/深度学习 算法 Python
MATLAB 实现轴承转轴信号仿真
轴承转轴信号仿真是一种重要的研究手段,用于分析轴承的健康状态、检测故障以及开发故障诊断算法。通过构建仿真信息并添加故障信号,可以生成用于轴承信号分析的测试数据。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
145 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
4月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
5月前
|
编解码 算法 数据安全/隐私保护
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
|
6月前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
8月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
10月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
基于广义Benders分解法的综合能源系统优化规划(matlab程序)

热门文章

最新文章