六自由度Stewart平台的matlab模拟与仿真

简介: **摘要**探索MATLAB2022a模拟6-DOF Stewart平台,模拟动态变化及伺服角度。平台实现XYZ平移及绕XYZ轴旋转。结构含中心动平台、固定基座及6个伺服驱动的伸缩连杆。运动学原理涉及球铰/虎克铰的转动自由度。通过动力学分析解决输入力矩到平台加速度的转换。核心算法与模型揭示了平台的精密定位能力。仿真结果显示动态性能。

1.课题概述
六自由度Stewart平台的matlab模拟与仿真,模拟六自由度Stewart平台的动态变化情况以及伺服角度。

2.系统仿真结果
1.jpeg
2.jpeg

3.核心程序与模型
版本:MATLAB2022a

for k = 1:length(Zheave)% 遍历每个时间点,计算并绘制运动轨迹和伺服角度  
    % 计算基座到平台的旋转矩阵 
Mrate = [cos(psi)*cos(theta), cos(psi)*sin(phi) * sin(theta) - cos(phi)*sin(psi), sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta);
             cos(theta)*sin(psi), cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta),   cos(phi)*sin(psi)*sin(theta) - cos(psi)*sin(phi);
            -sin(theta),          cos(theta)*sin(phi),                                cos(phi)*cos(theta)        ];

    %计算有效腿长  
    T  = [Xsurge(k) Ysway(k) Lsqrt+Zheave(k)]';           % 平台中心的坐标 
    q  = repmat(T,1,6) + Mrate*Platm;          % 将平台坐标转换到基座坐标系下  
xq = q(1,:);                        % 转换后的x坐标  
yq = q(2,:);                        % 转换后的y坐标  
zq = q(3,:);                        % 转换后的z坐标  

    l  = q - Base;   % 计算腿长(向量)  
    %计算伺服角度 
    L = sum(l.*l) - (Lleg^2 - Larm^2);% 计算L值(考虑伺服臂和腿的长度)
    M = 2*Larm*(zq - zb);% 计算M值(考虑z方向的差异)  
    N = 2*Larm*(cosd(Theta3).*(xq - xb) + sind(Theta3).*(yq - yb)); % 计算N值(考虑x和y方向的差异以及伺服臂角度)  
    alpha = asind(L./sqrt(M.^2 + N.^2)) - atand(N./M);      % 计算伺服角度(逆正弦和逆正切函数)  
    Sets(k,:) = alpha;% 存储计算得到的伺服角度  

    % 计算伺服臂坐标
    xa = Larm*cosd(alpha).*cosd(Theta3) + xb;
ya = Larm*cosd(alpha).*sind(Theta3) + yb;
    za = Larm*sind(alpha) + zb;

    %% Plot
clf

subplot(221);
    views;
view([0,0]); 
    title('side');

subplot(222);
    views;
view([45,45]); 
    title('iso');

subplot(223);
    views;
view([90,0]); 
    title('front');

subplot(224);
    views;
view([145,15]); 
    title('iso');
         % select view
pause(0.00001)
end

figure
plot(Times,Sets,'LineWidth',2);
xlabel('时间');
ylabel('伺服角度');
title('伺服角度');
legend('1st Arm','2st Arm','3st Arm','4st Arm','5st Arm','6st Arm');
grid on;
35

4.系统原理简介
六自由度(6-DOF)Stewart平台是一种高度灵活且广泛应用的空间定位机构,它能够实现六个独立自由度的运动:三个平动自由度(X、Y、Z轴方向的直线移动)和三个转动自由度(绕X、Y、Z轴的旋转)。这种平台由一个中心平台和通过六个具有可伸缩连杆与六个固定基座相连的伺服驱动器组成,每个连杆末端装有万向节,确保任何角度下的力矩传递。

    Stewart平台由上下两个平行平台(上平台为动平台,下平台为静平台)和六个可伸缩的支撑杆组成。每个支撑杆的两端分别通过球铰或虎克铰与上下平台相连。球铰可以实现三个方向的转动自由度,而虎克铰则可以实现两个方向的转动自由度。因此,通过合理选择球铰或虎克铰的连接方式,可以实现平台在空间中的六个自由度运动。

4.1运动学原理

368e789b66a8f8128d2b4e1e6748a26a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.2 Stewart平台运动学方程
动力学分析是求解平台在给定输入力和力矩下的运动加速度。对于Stewart平台而言,输入力和力矩为六个支撑杆的驱动力和驱动力矩,输出加速度为动平台的加速度和角加速度。

0becf753333c53b4054ca347f6a2032f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
8天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
8天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
8天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
1月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
1月前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
121 12
|
1月前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
9月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
352 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
9月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
215 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
307 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码