基于Qlearning强化学习的小车弧线轨迹行驶控制matlab仿真

简介: **MATLAB 2022a仿真实现Q-learning控制小车弧线行驶,展示学习过程及奖励变化。Q-learning是无模型强化学习算法,学习最优策略以稳定行驶。环境建模为二维平面,状态包括位置、朝向,动作涵盖转向、速度。奖励函数鼓励保持在轨迹上,用贝尔曼方程更新Q表。MATLAB代码动态显示轨迹及奖励随训练改善。**

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg

2.算法涉及理论知识概要
Q-learning是一种离散时间强化学习算法,无需模型即可直接从环境中学习最优策略。当应用于小车弧线轨迹行驶控制时,其核心任务是让小车自主学习如何控制转向和速度,以在指定的曲线上稳定行驶。

2.1强化学习基础
强化学习的基本框架由四部分组成:环境(Environment)、代理(Agent)、状态(State)、动作(Action)和奖励(Reward)。代理根据当前状态采取行动,环境反馈新的状态和奖励,代理的目标是最大化累积奖励。

2.2 环境建模与状态空间
对于小车弧线行驶任务,环境可以简化为二维平面,其中小车的位置和朝向是关键状态变量。状态空间S可以定义为小车的位置坐标x,y)、朝向角θ以及可能的其他因素(如速度、曲率等),即S={(x,y,θ,...)}。为简化起见,可以假设状态空间离散化,每个维度划分为若干区间。

2.3 动作空间
动作空间A定义了小车可以执行的所有控制操作,比如前进、后退、左转、右转以及不同速度的组合。同样,动作空间也应离散化处理,例如: A={加速,减速,左转,右转,直行}

2.4 奖励函数设计
奖励函数R(s,a)是引导学习过程的关键,它根据当前状态s和采取的动作a给出即时反馈。在弧线行驶任务中,奖励设计需鼓励小车保持在目标轨迹上,同时考虑行驶的稳定性、速度和效率。例如,当小车位于轨迹上且行驶方向正确时给予正奖励;偏离轨迹或行驶不稳定时给予负奖励;成功完成一圈行驶给予大量正奖励。

2.5 Q-learning算法
Q-learning通过更新Q表来学习在给定状态下采取每个动作的价值,即Q(s,a)表示在状态s下采取动作a后预期累积奖励的估计值。更新规则遵循贝尔曼方程,结合ε-greedy策略(在探索和利用之间平衡)进行决策:
0ba0453aaa08b7e23cdf9b17224e487a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于Q-learning的小车弧线轨迹行驶控制,通过不断试错学习,逐步优化行驶策略,最终实现自主、稳定地沿预定轨迹行驶。此过程涉及状态空间的合理定义、动作的精心设计、奖励函数的巧妙构造以及Q-table的有效更新,每一环节都对学习效果有着重要影响。

3.MATLAB核心程序

for i = 1:length(ysim.Reward.Time)
    cla;  
    plot(Xpos,Ypos,'b');  
    hold on
    x = States(1,1,i);  
    y = sin(5*x);  
    plot(x,y,'sq','MarkerSize',10,'MarkerEdgeColor','red','MarkerFaceColor',[0 1 0]);
    title(['Reward = ' num2str(crwd(i))])
    pause(0.025)
end
% 绘制结果
figure;
plot(Tnets.EpisodeIndex,Tnets.EpisodeReward,'b');
hold on;
plot(Tnets.EpisodeIndex,Tnets.AverageReward,'r');
xlabel('训练次数');
ylabel('奖励');
legend('训练奖励','平均奖励');
0Z_005m
相关文章
|
8天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
9天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
197 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
6月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章