MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究

简介: MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究

全文链接:http://tecdat.cn/?p=31303


CT技术伴随着一定剂量的辐射,会对患者的身体健康造成影响,而且 高剂量的辐射会损害人体的遗传物质,甚至造成不可逆的损伤,进而诱发癌症点击文末“阅读原文”获取完整代码数据


因此,如何在保证成像质量的前提下尽可能地降低 CT 辐射剂量一直是科学家们 研究的热点目标之一。此外,传统的CT扫描技术只能显示患者体内病灶的形态, 无法显示目标结构的化学成分信息。由于不同化学组分的生物组织经过 X 射线扫描后可能会具有相近甚至相同的衰减系数,从而导致成像不准确进而造成误诊。


解决方案


本文利用杜克大学所提供的 XCAT 软件,构建人体模型,然后使用 MATLAB 仿真出所构建模型基于能谱 CT 的投影域物质分解数据,再利用深度学习技术对 所得到的 CT 成像数据进行学习,构建可以识别人体骨骼和软组织的 CT 图像分解模型。所得到的模型可以在较低辐射剂量的条件下,利用能谱 CT 和深度学习 技术的原理,得到更加准确的 CT 重建图像。相较于传统 CT,可以实现在更低 的辐射剂量下得到更多更准确的人体内部组织结构信息的目的。这种最新的 CT 成像技术,将为医生提供患者更加准确的组织、病例信息,为医生做出准确高效 的诊断提供强大的信息基础。与此同时,也极大地降低了患者所承受的医源辐射剂量,保证了患者在接受诊疗的过程中不再受到二次伤害,为患者的健康提供了 重要保障。


数据源准备


对于数据最深层的需求来自 U-net 网络模型的训练。本项目的实验由于实验条件受限,使用的是个人 PC 机,运算能力较小,故选取较小的训练集和测试集。本项目初步选取 30 张 CT 图片作为 U-net 网络的训练集,每一张图片均由 MATLAB 所仿真的能谱 CT 模型得到。每一张图片需要由1-140keV下的 140 个 XCAT 人体模型拟合得到(因此,本项目共需要构建 4200 个不同的 XCAT 人体模型。这 4200个模型,分属 30个不同的部位,每一个部位都分别由 1-140keV 的 X 射线模拟照射得到 140 个不同的模型。


特征转换


基于本章中所介绍的能谱 CT 重建理论,本项目选用人体组织中的骨骼和软组 织作为物质分解的两种基物质,利用 MATLAB 实现其具体算法。根据本章中对于基物质分解模型理论的详细介绍和各个公式,结合试验所得人体骨骼和软组织 的线性衰减系数,只需很短的代码就可以实现物质分解模型的仿真。本节试验目的是为 U-net 物质分解模型提供训练集和测试集。具体为利用 MATLAB 仿真出 基物质分解模型,将原始的能谱 CT 成像结果分解为骨骼和软组织,作为对应影像的标签。利用所得到的高、低能谱成像数据作为输入。


划分训练集和测试集



点击标题查阅往期内容


R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化


01

02

03

04


建模


U-net 网络结构是全卷积神经网络( FCN )的一种,是一种广泛应用于医学 图像分割领域的深度学习网络,它是由弗莱堡大学 Olaf 在细胞影像学分割比赛 中提出的。由于该网络结构酷似英文字母 “U ” ,故被称为 U-net 。该网络由编码层和解码层两部分组成。其中编码层主要作用是提取图片的上下文信息,解码层则对图片中的目标区域进行定位。U-net 网络采取数据增强策略可以实现对于样本较少的数据的准确学习。U-net 网络结构中没有全连接层,因此可以大幅度地减少所需要的学习的参数量,极大地提高了网络结构的学习效率。

实验一采用高、低能谱图像作为输入数据,以软组织分割图像作为标签,训练 U-net 网络。网络训练结果如下

测试结果为:

由上述实验结果可知,两个实验随着训练次数的增加,它们所得到网络的准确率都逐渐上升至接近1的值并趋于稳定,而损失函数的值也逐渐减小并趋于稳定。这说明这两个实验训练所得到的模型最终都收敛,因而这两个基物质分割网络是稳定有效的。

相关文章
|
3月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
173 0
|
3月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
146 0
|
3月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
223 8
|
3月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
131 8
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
222 8
|
12月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
471 22
|
9月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1203 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
1136 6
|
11月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
424 40
|
9月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
255 0

热门文章

最新文章