通过MATLAB分别对比二进制编码遗传优化算法和实数编码遗传优化算法

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 摘要:使用MATLAB2022a对比了二进制编码与实数编码的遗传优化算法,关注最优适应度、平均适应度及运算效率。二进制编码适用于离散问题,解表示为二进制串;实数编码适用于连续问题,直接搜索连续空间。两种编码在初始化、适应度评估、选择、交叉和变异步骤类似,但实数编码可能需更复杂策略避免局部最优。选择编码方式取决于问题特性。

1.程序功能描述
通过MATLAB分别对比二进制编码遗传优化算法和实数编码遗传优化算法,对比最优适应度值,平均适应度值以及算法运算效率。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg

3.核心程序

Popu    = 6*rand(NUM,dim)-3;
%初始化最优适应度值
Vbest   =-inf;
for i=1:NUM%计算适应度值
    y(i)=fitness(Popu(i,:));
    if y(i)>Vbest
Vbest=y(i);
Vopt=Popu(i,:);
    end
end
%迭代
for t=1:Maxiter
    t
    %选择
    p = y/sum(y);
    q = cumsum(p);
    %选择个体索引
    for i=1:NUM
        temp       = rand(1);
idx        = find(q>=temp);
Popus(i,:) = Popu(idx(1),:);
    end
    %交叉
    for i=1:NUM
        if rand(1)<pc
            i1=randi([1,NUM]);
            i2=randi([1,NUM]);
            while i1==i2
                i1=randi([1,NUM]);
                i2=randi([1,NUM]);
            end
            k                 = randi([1,dim]);
            temp              = Popus(i1,k+1:end);
Popus(i1,k+1:end) = Popus(i2,k+1:end);
Popus(i2,k+1:end) = temp;
        end
    end
    %变异
    Pm0   = rand(NUM,dim);
Popus = (Pm0>=pm).*Popus + (Pm0<pm).*Pm0;
    %更新
    .....................................................
end
figure
plot(1:Maxiter,Vsave0)
hold on
plot(1:Maxiter,Vsave1)
legend('最优适应度','平均适应度')
xlabel('迭代次数')
ylabel('适应度值')
t=toc 
save R1.mat 
0003

4.本算法原理
遗传算法是一种基于生物进化原理的优化算法,广泛应用于各种问题,如函数优化、机器学习、图像处理等。在遗传算法中,编码方式是关键的一步,因为它决定了问题的表示方式以及算法的搜索空间。主要有两种编码方式:二进制编码和实数编码。

4.1二进制编码遗传优化算法

   二进制编码遗传优化算法是一种常见的遗传算法,它将问题的解表示为二进制字符串。在二进制编码中,每个解的每个基因都被编码为一个0或1的二进制数。这种编码方式在许多问题中都很有效,因为它可以很容易地表示离散解空间。

  二进制编码遗传优化算法的基本步骤:

   初始化:随机生成一组二进制字符串作为初始种群。每个字符串的长度等于问题中决策变量的数量。

   适应度评估:计算每个字符串的适应度值,适应度值是根据问题的目标函数来计算的。

   选择:根据适应度值选择哪些字符串进入下一代。通常使用轮盘赌选择法或锦标赛选择法等。

   交叉(重组):随机选择两个字符串,进行交叉操作,产生新的字符串。交叉操作是通过交换两个字符串的部分基因来完成的。

   变异:随机选择一些字符串,对它们的基因进行变异操作,以增加种群的多样性。变异操作是通过随机改变一个基因的值来实现的。

   终止条件:当达到预设的迭代次数或找到满足要求的解时,算法终止。

4.2实数编码遗传优化算法

   实数编码遗传优化算法将问题的解表示为实数字符串。在实数编码中,每个解的每个基因都被编码为一个实数值。这种编码方式在连续问题或具有连续决策变量的混合离散问题中很常见。

以下是实数编码遗传优化算法的基本步骤:

   初始化:随机生成一组实数字符串作为初始种群。每个字符串的长度等于问题中决策变量的数量。

   适应度评估:计算每个字符串的适应度值,适应度值是根据问题的目标函数来计算的。

   选择:根据适应度值选择哪些字符串进入下一代。通常使用轮盘赌选择法或锦标赛选择法等。

   交叉(重组):随机选择两个字符串,进行交叉操作,产生新的字符串。交叉操作是通过线性组合两个字符串的基因来完成的。

   变异:随机选择一些字符串,对它们的基因进行变异操作,以增加种群的多样性。变异操作是通过随机改变一个基因的值来实现的。

   终止条件:当达到预设的迭代次数或找到满足要求的解时,算法终止。

   二进制编码和实数编码的主要区别在于问题的表示方式不同。二进制编码适用于离散问题,而实数编码适用于连续问题或具有连续决策变量的混合离散问题。此外,由于实数编码使用了实数表示解,因此可以直接对连续空间进行搜索,而二进制编码只能通过离散的搜索空间进行搜索。然而,由于实数编码的搜索空间是连续的,因此可能需要更复杂的搜索策略来找到全局最优解,因为初始种群可能陷入局部最优解中。在某些问题中,实数编码可能比二进制编码更有效,但在其他问题中,二进制编码可能更有效。选择哪种编码方式取决于问题的具体性质和要求。
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
101 80
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
1天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
7天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
34 3
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
7天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
存储 算法 数据安全/隐私保护
基于方块编码的图像压缩matlab仿真,带GUI界面
本项目展示了基于方块编码的图像压缩算法,包括算法运行效果、软件环境(Matlab 2022a)、核心程序及理论概述。算法通过将图像划分为固定大小的方块并进行量化、编码,实现高效压缩,适用于存储和传输大体积图像数据。