基于语音信号MFCC特征提取和GRNN神经网络的人员身份检测算法matlab仿真

简介: **语音识别算法概览** MATLAB2022a中实现,结合MFCC与GRNN技术进行说话人身份检测。MFCC利用人耳感知特性提取语音频谱特征,GRNN作为非线性映射工具,擅长序列学习,确保高效识别。预加重、分帧、加窗、FFT、滤波器组、IDCT构成MFCC步骤,GRNN以其快速学习与鲁棒性处理不稳定数据。适用于多种领域。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
MATLAB2022a

3.部分核心程序
```P = [Dat1_wav1;Dat1_wav2;Dat2_wav1;Dat2_wav2;Dat3_wav1;Dat3_wav2;Dat4_wav1;Dat4_wav2];
T = [ones(800,1);2ones(800,1);3ones(800,1);4*ones(800,1)];

%GRNN训练
net=newgrnn(P',T',0.00001);

%测试
test = Dat4_wav3;

y = net(test');
y2 = mode(y);

if y2==1
disp('man1');
end
if y2==2
disp('man2');
end
if y2==3
disp('man3');
end
if y2==4
disp('man14');
end
144

```

4.算法理论概述
基于语音信号的MFCC特征提取和GRNN(Gated Recurrent Neural Networks)神经网络的人员身份检测算法,是一种结合了传统信号处理技术和深度学习的先进方法,用于识别和验证说话人的身份。这种方法利用了语音信号的时序特性,通过Mel频率倒谱系数(Mel Frequency Cepstral Coefficients, MFCC)进行特征提取,随后利用GRNN网络的序列建模能力,学习和区分不同说话人的声音特征,从而实现高效的身份检测。

4.1 MFCC特征提取
MFCC是语音信号处理中常用的一种特征表示方法,它基于人耳的听觉感知特性,将音频信号转换成一组系数,这些系数能较好地反映语音的频谱特性。MFCC的提取过程主要包括以下几个步骤:

预加重:对原始语音信号进行预加重处理,增强高频信息,公式为:y[n]=x[n]−αx[n−1],其中α是一个预加重因子,通常取0.97或0.95。

分帧:将预加重后的信号分割成固定长度的帧,每一帧覆盖一定的时间窗口。

加窗函数:每一帧数据乘以窗函数(如汉明窗)以减少帧边缘效应。

傅里叶变换:对加窗后的每一帧信号进行快速傅里叶变换(FFT)。

滤波器组:将频率域信号通过一组梅尔滤波器,滤波器中心频率按梅尔刻度分布,覆盖人耳的听觉范围。

倒谱:计算每个滤波器组输出的能量,并取对数,再进行离散余弦变换(IDCT),得到MFCC。

4.2 GRNN神经网络概述
广义回归神经网络(GRNN Generalized Regression Neural Network)是美国学者 Don-ald F. Specht在1991年提出的,它是径向基神经网络的一种。GRNN具有很强的非线性映射能力和柔性网络结构以及高度的容错性和鲁棒性,适用于解决非线性问题。GRNN 在逼近能力和学习速度上较RBF网络有更强的优势,网络最后收敛于样本量积聚较多的优化回归面,并且在样本数据较少时,预测效果也较好。此外,网络还可以处理不稳定的数据。因此,GRNN 在信号过程、结构分析、教育产业,能源、食品科学、控制决策系统、药物设计、金融领域、生物工程等各个领域得到了广泛的应用。

相关文章
|
3天前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
3天前
|
监控 算法 自动驾驶
目标检测算法:从理论到实践的深度探索
【7月更文第18天】目标检测,作为计算机视觉领域的核心任务之一,旨在识别图像或视频中特定对象的位置及其类别。这一技术在自动驾驶、视频监控、医疗影像分析等多个领域发挥着至关重要的作用。本文将深入浅出地介绍目标检测的基本概念、主流算法,并通过一个实际的代码示例,带您领略YOLOv5这一高效目标检测模型的魅力。
36 11
|
5天前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
4天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
4天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```
|
6天前
|
传感器 算法
基于MPPT最大功率跟踪算法的风力机控制电路simulink建模与仿真
**摘要:** 本课题利用MATLAB2022a的Simulink进行风力机MPPT控制电路仿真,关注风力机转速、功率参数及CP效率。MPPT确保风力机在不同风速下优化运行,捕捉最大功率。风力机将风能转化为电能,功率与风速、叶片及发电机特性相关。MPPT算法动态调整参数以保持在最大功率点,常见算法如扰动观察法。仿真包含风速、转速、功率测量及控制算法模块,设计时需综合考虑传感器精度、抗干扰及控制器性能,适应不同风力机和发电机需求。
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
2月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章