基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

276b7e06e8c8957f4f08ef5790592375_82780907_202312142227490093838150_Expires=1702564669&Signature=3teVQ%2FCpX9%2BB0ZXKMYbdY0I7iK0%3D&domain=8.jpeg

将FPGA的仿真结果导入到MATLAB,结果如下所示:

facd9c401b1443fb0a8963ec334502dd_82780907_202312142227590968343481_Expires=1702564680&Signature=lVrI7C8MTyGDGohZnYGwFhwtF4E%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
基于FPGA的图像形态学腐蚀算法实现主要依赖于图像处理的基本原理和数学形态学的基础知识。在图像处理中,形态学操作被广泛应用于各种图像处理任务,包括噪声消除、对象检测和识别、图像分割等。其中,腐蚀操作是形态学操作的一种基本形式,它有助于减小图像中明亮区域的大小。

   首先,让我们了解一下图像形态学的基础知识。形态学操作通常在二值图像上进行,但是也可以扩展到灰度图像和彩色图像。在二值图像中,形态学腐蚀操作被定义为将一个结构元素(通常是一个小的矩形或圆形)在图像上移动,并将每个像素值替换为该像素值和结构元素覆盖区域的最小值。这样,在经过腐蚀操作后,图像中的明亮区域(或高像素值区域)会得到缩小。

具体来说,腐蚀操作的数学表达式可以表示为:

Erosion(f,I)=min⁡{f(x+s),I(s)}(x)f(x+s)−I(s)min{f(x+s), I(s)}

   其中,f是原始图像,I是结构元素,s是结构元素的位移。这个公式表示的是,对于每一个像素位置x,将结构元素中心对齐到位置x,并取结构元素覆盖区域的最小值作为输出图像在该位置的值。

  在FPGA上实现图像形态学腐蚀算法时,可以采用硬件并行处理的方式,以提高处理速度。首先,将输入的图像数据存储在FPGA的内部RAM中。然后,通过一个并行处理器,将结构元素在图像上移动,并计算每个像素位置的输出值。最后,将计算出的输出数据存储在外部RAM中,或者直接用于后续的图像处理任务。

  需要注意的是,在实现形态学腐蚀算法时,需要选择合适的结构元素形状和大小。不同的结构元素可能会导致不同的腐蚀效果。此外,由于形态学操作涉及到大量的数据运算,因此需要合理优化算法和硬件设计,以提高处理速度和效率。

   总的来说,基于FPGA的图像形态学腐蚀算法实现需要结合图像处理的基本原理和数学形态学的基础知识,同时考虑硬件并行处理的特点和实际应用的需求。通过合理选择结构元素、优化算法和硬件设计等手段,可以实现高效的图像腐蚀操作。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_binary_image;
wire [7:0] o_expansion;
integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\codepz

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\codepz\data.bmp","rb");
dat = $fread(image_buff,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

2000;

i_rst=0;
end

always #10 i_clk=~i_clk;

always@(posedge i_clk)
begin
II0<=image_buff[jj];
jj<=jj+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I0 (II0),
.o_binary_image (o_binary_image),
.o_expansion (o_expansion)
);

integer fout1;
integer fout2;
initial begin
fout1 = $fopen("binary_image.txt","w");
fout2 = $fopen("expansion.txt","w");
end

always @ (posedge i_clk)
begin

$fwrite(fout1,"%d\n",o_binary_image);
$fwrite(fout2,"%d\n",o_expansion);

end

endmodule

```

相关文章
|
12天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
12天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
12天前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
47 0
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
1月前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
12天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
下一篇
oss创建bucket