基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

276b7e06e8c8957f4f08ef5790592375_82780907_202312142227490093838150_Expires=1702564669&Signature=3teVQ%2FCpX9%2BB0ZXKMYbdY0I7iK0%3D&domain=8.jpeg

将FPGA的仿真结果导入到MATLAB,结果如下所示:

facd9c401b1443fb0a8963ec334502dd_82780907_202312142227590968343481_Expires=1702564680&Signature=lVrI7C8MTyGDGohZnYGwFhwtF4E%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
基于FPGA的图像形态学腐蚀算法实现主要依赖于图像处理的基本原理和数学形态学的基础知识。在图像处理中,形态学操作被广泛应用于各种图像处理任务,包括噪声消除、对象检测和识别、图像分割等。其中,腐蚀操作是形态学操作的一种基本形式,它有助于减小图像中明亮区域的大小。

   首先,让我们了解一下图像形态学的基础知识。形态学操作通常在二值图像上进行,但是也可以扩展到灰度图像和彩色图像。在二值图像中,形态学腐蚀操作被定义为将一个结构元素(通常是一个小的矩形或圆形)在图像上移动,并将每个像素值替换为该像素值和结构元素覆盖区域的最小值。这样,在经过腐蚀操作后,图像中的明亮区域(或高像素值区域)会得到缩小。

具体来说,腐蚀操作的数学表达式可以表示为:

Erosion(f,I)=min⁡{f(x+s),I(s)}(x)f(x+s)−I(s)min{f(x+s), I(s)}

   其中,f是原始图像,I是结构元素,s是结构元素的位移。这个公式表示的是,对于每一个像素位置x,将结构元素中心对齐到位置x,并取结构元素覆盖区域的最小值作为输出图像在该位置的值。

  在FPGA上实现图像形态学腐蚀算法时,可以采用硬件并行处理的方式,以提高处理速度。首先,将输入的图像数据存储在FPGA的内部RAM中。然后,通过一个并行处理器,将结构元素在图像上移动,并计算每个像素位置的输出值。最后,将计算出的输出数据存储在外部RAM中,或者直接用于后续的图像处理任务。

  需要注意的是,在实现形态学腐蚀算法时,需要选择合适的结构元素形状和大小。不同的结构元素可能会导致不同的腐蚀效果。此外,由于形态学操作涉及到大量的数据运算,因此需要合理优化算法和硬件设计,以提高处理速度和效率。

   总的来说,基于FPGA的图像形态学腐蚀算法实现需要结合图像处理的基本原理和数学形态学的基础知识,同时考虑硬件并行处理的特点和实际应用的需求。通过合理选择结构元素、优化算法和硬件设计等手段,可以实现高效的图像腐蚀操作。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_binary_image;
wire [7:0] o_expansion;
integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\codepz

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\codepz\data.bmp","rb");
dat = $fread(image_buff,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

2000;

i_rst=0;
end

always #10 i_clk=~i_clk;

always@(posedge i_clk)
begin
II0<=image_buff[jj];
jj<=jj+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I0 (II0),
.o_binary_image (o_binary_image),
.o_expansion (o_expansion)
);

integer fout1;
integer fout2;
initial begin
fout1 = $fopen("binary_image.txt","w");
fout2 = $fopen("expansion.txt","w");
end

always @ (posedge i_clk)
begin

$fwrite(fout1,"%d\n",o_binary_image);
$fwrite(fout2,"%d\n",o_expansion);

end

endmodule

```

相关文章
|
1月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
361 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
1月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
1141 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
296 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
179 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
1月前
|
机器学习/深度学习 XML 并行计算
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用YOLOX完成图像目标检测任务的完整流程,包括数据准备、模型训练、验证和测试。
152 0
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
395 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
4月前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
8天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
27 1
|
29天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
44 4
|
29天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。