基于Googlenet深度学习网络的交通工具种类识别matlab仿真

简介: 基于Googlenet深度学习网络的交通工具种类识别matlab仿真

1.算法运行效果图预览

afd45a357b4fdf3ff83ef990754d5b08_82780907_202311020006190727504705_Expires=1698855379&Signature=IhMpUOMB7msxmLeV%2Fv9kZlcvKpE%3D&domain=8.jpg
215b695bed10bbe3fe258f40f6938b0a_82780907_202311020006190695941784_Expires=1698855379&Signature=9fk0Ty4oJMhcIDysbOEc0FAkTGw%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
VGG在2014年由牛津大学著名研究组vGG (Visual Geometry Group)提出,斩获该年lmageNet竞赛中Localization Task (定位任务)第一名和 Classification Task (分类任务)第二名。Classification Task (分类任务)的第一名则是GoogleNet 。GoogleNet是Google研发的深度网络结构,之所以叫“GoogLeNet”,是为了向“LeNet”致敬.人员行为动作识别是计算机视觉和深度学习领域的重要应用之一。近年来,深度学习网络在人员行为动作识别中取得了显著的成果。

  1. 原理
    1.1 深度学习与卷积神经网络(CNN)
    深度学习是一种机器学习技术,它通过构建多层神经网络来模拟人脑的神经元之间的连接,实现对数据的学习和特征提取。卷积神经网络(CNN)是深度学习中的一种重要结构,特别适用于图像识别任务。它通过卷积层、池化层和全连接层来逐层提取和学习图像的特征。
    

1.2 GoogLeNet
GoogLeNet 是一个深度卷积神经网络,由 Google 在 2014 年提出。它通过引入 Inception 模块来解决深层网络中参数过多和计算量大的问题。Inception 模块使用不同大小的卷积核和池化操作并行提取特征,然后将它们拼接在一起,从而获得更丰富的特征表示。

GoogLenet网络亮点
1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)

b8c0e72761affd4e9ca87f28a68c785f_82780907_202311020007280086549580_Expires=1698855448&Signature=fECMzkzQ7pWwOnoh91ZcfGtRO%2Fk%3D&domain=8.jpg

  1. 实现过程
    2.1 数据预处理
    在矿石种类识别任务中,首先需要准备标注好的数据集,包含不同行为动作的图像或视频帧。然后,将图像进行预处理,包括图像尺寸调整、归一化等操作,以便输入到深度学习网络中。

2.2 构建网络模型
GoogLeNet 模型可以通过深度学习框架如 TensorFlow 或 PyTorch 构建。模型的基本结构包括卷积层、池化层、Inception 模块和全连接层。可以根据具体任务进行网络的修改和定制。

2.3 数据输入与训练
将预处理后的图像作为输入,通过前向传播得到网络的输出。然后,通过与标签进行比较,计算损失函数并进行反向传播,更新网络的权重参数。通过多次迭代训练,使得网络逐渐学习到特征并提高识别能力。

2.4 模型评估与调优
在训练过程中,需要将数据集划分为训练集、验证集和测试集。通过验证集监控模型的性能,并根据验证集的表现进行模型的调优。在测试集上进行评估,得到模型在未见过数据上的识别准确率.

4.部分核心程序

```% 获取网络层名称和类别数
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;

Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的特征学习器层和分类器层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);

New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 替换原网络中的特征学习器层和分类器层
Network_Architecture = layerGraph(net);

New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);

analyzeNetwork(New_Network)

% 训练设置参数
maxEpochs = 20;
Minibatch_Size = 8;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...
'MiniBatchSize', Minibatch_Size, ...
'MaxEpochs', maxEpochs, ...
'InitialLearnRate', 1e-3, ...
'Shuffle', 'every-epoch', ...
'ValidationData', Resized_Validation_Dataset, ...
'ValidationFrequency', Validation_Frequency, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 在调整后的数据集上训练网络
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);
% 保存训练后的网络模型
save gnet.mat

```

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
2月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
164 73
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
25 1
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
40 2
|
1月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
1月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。