【视频】少样本图像分类?迁移学习、自监督学习理论和R语言CNN深度学习卷积神经网络实例

简介: 【视频】少样本图像分类?迁移学习、自监督学习理论和R语言CNN深度学习卷积神经网络实例

全文链接:http://tecdat.cn/?p=30793


您想构建一个没有太多训练数据的机器学习模型吗?众所周知,机器学习需要大量数据,而收集和注释数据需要时间且成本高昂点击文末“阅读原文”获取完整代码数据


本文介绍了一些在没有太多数据或标记数据的情况下进行图像分类的方法。我将介绍迁移学习、自监督学习的最重要方面。


利用未标记的数据


与标记数据相比,未标记的数据通常更容易访问。不利用这一点就是一种浪费!

自我监督学习

自监督学习解决了从未标记的数据中学习深度特征的问题。训练自监督模型后,特征提取器可以像在迁移学习中一样使用,因此您仍然需要一些带注释的数据来进行微调。

那么,如何从未标记的数据中训练深度特征提取器呢?总而言之,您需要一个足够困难的代理任务(Pretext Task),使您能够学习分类任务的有趣特征。

如果你想在不玩实际比赛的情况下赢得足球比赛,例如,你可以尽可能多地训练杂技球。杂技球将提高您的控球技术,这在玩游戏时会派上用场。

代理任务的一个例子是预测图像的旋转角度。基本上,对于每个图像,您应用旋转 z 来获取旋转的图像 x。然后,你训练一个神经网络来预测 x 中的 z 此转换预测任务会强制您的网络深入了解您的数据。事实上,要预测狗图像的旋转,您的网络首先需要了解图像中有一只狗,并且狗应该以特定的方式定向。

根据特定目标,代理任务可能会有很大差异。常用的代理任务包括:

  • 转换预测:数据集中的样本由转换修改,您的网络将学习预测转换。
  • 屏蔽预测:输入图像的随机方块被屏蔽,网络必须预测图像的屏蔽部分。
  • 实例区分:了解区分所有数据样本的表示形式。例如,每个数据点都可以被视为一个类,并且可以在此任务上训练分类器。

迁移学习


当您从头开始训练深度神经网络时,您通常会随机初始化权重。这是初始化神经网络的最佳方法吗?答案通常是否定的。

首先,深度学习是关于表征的。在经典机器学习中,特征需要手动制作。深度学习背后的想法是,你让你的神经网络在训练时自己学习特征表示。

在神经网络的每一层之间,您有一个输入数据的表示形式。你越深入你的神经网络,你的表示应该越全局化。通常,已知分类器神经网络的第一层能够检测颜色和形状。中间层将第一层表示作为输入,以计算比第一层更复杂的概念。例如,他们可能会检测到苹果叶或枝干的存在。最后一层给出了图像来自每个类的概率。

迁移学习背后的想法是,从另一个分类任务中学习的一些表示可能对您的任务有用。迁移学习是关于在另一项任务上获取预训练网络的第一层,在其上添加新层,并在感兴趣的数据集上微调整个网络。


点击标题查阅往期内容


【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享


01

02

03

04


作为比较,如果你的目标是学习赢得足球比赛,那么迁移学习将包括先学习打篮球,习惯移动你的身体,锻炼你的耐力等,然后再开始玩足球比赛。

它将如何影响最终网络的性能?您应该在哪里切断预先训练的网络?这些问题在中得到了广泛的解决。

总结最重要的想法:

  • 神经网络的第一层是非常通用的,而最深的层是预训练任务中最专业的。因此,您可以预期,如果您的预训练任务接近目标任务,那么保留更多层将更有益。
  • 在中间层切割通常会导致性能不佳。这是由于通过微调在中间层中达到的脆弱平衡。
  • 使用预先训练的权重总是比使用随机初始化的权重更好。这是因为通过先训练另一个任务,你的模型学会了它本来不会学到的特征。
  • 当重新训练这些预先训练的权重时,可以获得更好的表现——最终对它们使用较低的学习率。


R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化

本文演示了训练一个简单的卷积神经网络 (CNN) 来对 CIFAR 图像进行分类。由于本教程使用 Keras Sequential API,因此创建和训练我们的模型只需几行代码。


设置

library(keras)


下载并准备 CIFAR10 数据集

CIFAR10 数据集包含 10 个类别的 60,000 张彩色图像,每个类别有 6,000 张图像。数据集分为 50,000 张训练图像和 10,000 张测试图像。这些类是互斥的,它们之间没有重叠。

验证数据

为了验证数据集看起来是否正确,让我们绘制训练集中的前 25 张图像并在每张图像下方显示类别名称。

train %>%

 map(as.rater, max = 255) %>%

创建卷积基

下面的6行代码使用一种常见的模式定义了卷积基础:Conv2D和MaxPooling2D层的堆叠。

作为输入,CNN接受形状的张量(image\_height, image\_width, color\_channels),忽略了批次大小。如果你是第一次接触这些维度,color\_channels指的是(R,G,B)。在这个例子中,你将配置我们的CNN来处理形状为(32,32,3)的输入,这是CIFAR图像的格式。你可以通过将参数input_shape传递给我们的第一层来做到这一点。

kers\_moe\_etl %>% 
  laer\_c\_2d(fles = 32, ene_sz = c(3,3), acan = "relu", 
  lye\_apoi\_2d(posize = c(2,2)) %>% 
  lae\_cv\_2d(filrs = 64, relze = c(3,3), ctitio = "reu")

到目前为止,让我们展示一下我们模型的架构。

summary(model)


点击标题查阅往期内容


【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析


01

02

03

04


在上面,你可以看到每个Conv2D和MaxPooling2D层的输出是一个三维形状的张量(高度、宽度、通道)。当你深入到网络中时,宽度和高度维度往往会缩小。每个Conv2D层的输出通道的数量由第一个参数控制(例如32或64)。通常情况下,随着宽度和高度的缩小,你可以承受(计算上)在每个Conv2D层中增加更多的输出通道。


在顶部添加密集层

为了完成我们的模型,您需要将卷积基(形状为 (3, 3, 64))的最后一个输出张量输入一个或多个 Dense 层以执行分类。密集层将向量作为输入(1D),而当前输出是 3D 张量。首先,您将 3D 输出展平(或展开)为 1D,然后在顶部添加一个或多个 Dense 层。CIFAR 有 10 个输出类,因此您使用具有 10 个输出和 softmax 激活的最终 Dense 层。

model %>%
  leree(unis = 64, aciaion = "relu") %>%
  ayedese(unis = 10, acivin = "sftax")

这是我们模型的完整架构。

注意 Keras 模型是可变对象,您不需要在上面的 chubnk 中重新分配模型。

summary(modl)

如您所见,我们的 (3, 3, 64) 输出在经过两个 Dense 层之前被展平为形状为 (576) 的向量。


编译和训练模型

moel %>% comle(
  optier = "adam",
  lss = "specatialosnopy",
  mecs = "accray"
)

评估模型

plot(hsy)


ealte(oel, x,y, erbe = 0)

我们简单的 CNN 已经实现了超过 70% 的测试准确率。

相关文章
|
26天前
|
网络协议 Java Linux
【App Service】在Azure环境中如何查看App Service实例当前的网络连接情况呢?
在 Azure App Service(Windows 和 Linux)中部署应用时,分析网络连接状态是排查异常、验证端口监听及确认后端连接的关键。本文介绍如何在 Linux 环境中使用 `netstat` 命令查看特定端口(如 443、3306、6380)的连接情况,并解析输出结果。同时说明在 Windows App Service 中 `netstat` 被禁用的情况下,如何通过门户抓包等替代方法进行网络诊断。内容涵盖命令示例、操作步骤及附录说明,帮助开发者快速掌握云环境中的网络分析技巧。
53 11
|
7月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
366 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
6月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
383 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
7月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
571 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
487 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
463 10
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
9月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
251 3
|
10月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
355 8
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
933 7

热门文章

最新文章