MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类

简介: MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类

原文链接:http://tecdat.cn/?p=26318

此示例说明如何使用长短期记忆 (LSTM) 网络对序列数据的每个时间步长进行分类。


要训练深度神经网络对序列数据的每个时间步进行分类,可以使用 _序列对序列 LSTM 网络_。序列_对_序列 LSTM 网络使您能够对序列数据的每个单独时间步进行不同的预测。

此示例使用从佩戴在身上的智能手机获取的传感器数据。该示例训练 LSTM 网络,以在给定时间序列数据的情况下识别佩戴者的活动,这些数据表示三个不同方向的加速度计读数。训练数据包含七个时间序列数据。每个序列具有三个特征并且长度不同。数据集包含六个训练观察和一个测试观察。


加载序列数据

加载人类活动识别数据。该数据包含从佩戴在身上的智能手机获得的七个时间序列的传感器数据。每个序列具有三个特征并且长度不同。这三个特征对应于三个不同方向的加速度计读数。

XTrain

image.png

在图中可视化一个训练序列。绘制第一个训练序列的第一个特征,并根据相应的活动为绘图着色。

figure
for j = 1:numel
    label = classes;
    idx = find
    hold on
    plot
end

image.png


定义 LSTM 网络架构

定义 LSTM 网络架构。将输入指定为大小为 3 的序列(输入数据的特征数)。指定一个具有 200 个隐藏单元的 LSTM 层,并输出完整的序列。最后,通过包括一个大小为 5 的全连接层,然后是一个 softmax 层和一个分类层来指定五个类。

layers = \[ ...
    seuenceutLaer
    lsmLyer
    fulyCnectdyer
    sotmLyer
    clssfcainLyr\];

指定训练选项。将求解器设置为 'adam'。训练 60 个 epoch。

使用指定的训练选项训练 LSTM 网络 trainNetwork。每个 mini-batch 包含整个训练集,因此每个 epoch 更新一次图。序列很长,因此处理每个小批量和更新绘图可能需要一些时间。

image.png

测试 LSTM 网络

加载测试数据并在每个时间步进行分类。

加载测试数据。 XTest 包含一个维度为 3 的单个序列。  YTest is 包含与每个时间步相对应的分类标签序列。

figure
plot
xlabel
legend
title

image.png

使用对测试数据进行分类 。

YPrd = clssif;

或者,您可以使用 一次进行一个时间步长的预测 。通常,与一次一个时间步进行预测相比,对完整序列进行预测会更快。

计算预测的准确性。

ac = sum(YPrd == YTst{1})./nul(YTs{1})

image.png

使用绘图将预测与测试数据进行比较。

plot
hold on
plot
hold off

image.png

相关文章
|
14天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
5天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
2月前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
1月前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
3月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
9月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。

热门文章

最新文章