深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列

简介: 深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列

通过训练具有小型中心层的多层神经网络重构高维输入向量,可以将高维数据转换为低维代码。这种神经网络被命名为自编码器_Autoencoder_。

自编码器是_非线性_降_维_ 技术用于特征的无监督学习,它们可以学习比主成分分析效果更好的低维代码,作为降低数据维数的工具。

异常心跳检测

如果提供了足够的类似于某种底层模式的训练数据,我们可以训练网络来学习数据中的模式。异常测试点是与典型数据模式不匹配的点。自编码器在重建这些数据时可能会有很高的错误率,这表明存在异常。

该框架用于使用深度自编码器开发异常检测演示。该数据集是心电图ECG 时间序列查看文末了解数据获取方式,目标是确定哪些心跳是异常值。训练数据(20 个“好”心跳)和测试数据(为简单起见附加了 3 个“坏”心跳的训练数据),如下所示。每行代表一个心跳。

init()
PATH = os.path.expanduser("~/")
import_file(PATH + "train.csv")
import_file(PATH + "test.csv")

探索数据集。

tra.shape
# 将框架转置,将时间序列作为一个单独的列来绘制。
plot(legend=False); # 不显示图例


在训练数据中,我们有 20 个时间序列,每个序列有 210 个数据点。请注意,所有线条都很紧凑并且形状相似。重要的是要记住,在使用自编码器进行训练时,您只想使用 VALID 数据。应删除所有异常。

现在让我们训练我们的神经网络

Estimator( 
        activation="Tanh", 
        hidden=\[50\], 
       
)
model.train
model

我们的神经网络现在能够对 时间序列进行 _编码_。

现在我们尝试使用异常检测功能计算重建误差。这是输出层和输入层之间的均方误差。低误差意味着神经网络能够很好地对输入进行编码,这意味着是“已知”情况。高误差意味着神经网络以前没有见过该示例,因此是异常情况。

anomaly(test )

现在的问题是:哪个 test 时间序列最有可能是异常?

我们可以选择错误率最高的前 N 个

df\['Rank'\] = df\['MSE'\].rank
sorted

dfsorted\[MSE'\] > 1.0

datT.plot

daT\[anindex\].plot(color='red');

带监督微调的无监督预训练

有时,未标记的数据比标记的数据多得多。在这种情况下,在未标记数据上训练自编码器模型,然后使用可用标签微调学习模型是有意义的。

结论

在本教程中,您学习了如何使用自编码器快速检测时间序列异常。

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
23 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
20天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
156 80
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
61 31
|
14天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
1月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
1月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。