深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据

简介: 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据

深度学习无处不在。在本文中,我们将使用Keras进行文本分类。

-

准备数据集

出于演示目的,我们将使用  20个新闻组  数据集。数据分为20个类别,我们的工作是预测这些类别。如下所示:

通常,对于深度学习,我们将划分训练和测试数据。

导入所需的软件包

Python

import pandas as pd
import numpy as np
import pickle
from keras.preprocessing.text import Tokenizer
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from sklearn.preprocessing import LabelBinarizer
import sklearn.datasets as skds
from pathlib import Path


将数据从文件加载到Python变量

Python

# 为了复现性
np.random.seed(1237)
  
label_index = files_train.target
label_names = files_train.target_names
labelled_files = files_train.filenames
 
data_tags = ["filename","category","news"]
data_list = []
 
# 读取文件中的数据并将其添加到列表
 
data = pd.DataFrame.from_records(data_list, columns=data_tags)


我们的数据无法以CSV格式提供。我们有文本数据文件,文件存放的目录是我们的标签或类别。

我们将使用scikit-learn load_files方法。这种方法可以提供原始数据以及标签和标签索引。

最后我们得到一个数据框,其中包含文件名,类别和实际数据。


拆分数据进行训练和测试

Python

# 让我们以80%的数据作为训练,剩下的20%作为测试。
train_size = int(len(data) * .8)
 
train_posts = data['news'][:train_size]
train_tags = data['category'][:train_size]
train_files_names = data['filename'][:train_size]
 
test_posts = data['news'][train_size:]
test_tags = data['category'][train_size:]
test_files_names = data['filename'][train_size:]


标记化并准备词汇

Python

# 20个新闻组
num_labels = 20
vocab_size = 15000
batch_size = 100
 
# 用Vocab Size定义Tokenizer
tokenizer = Tokenizer(num_words=vocab_size)
tokenizer.fit_on_texts(train_posts)


在对文本进行分类时,我们首先使用Bag Of Words方法对文本进行预处理。

预处理输出标签/类

在将文本转换为数字向量后,我们还需要确保标签以神经网络模型接受的数字格式表示。

建立Keras模型并拟合

PowerShell

model = Sequential()


它为输入数据的维度以及构成模型的图层类型提供了简单的配置。

这是拟合度和测试准确性的代码段

100/8145 [..............................] - ETA: 31s - loss: 1.0746e-04 - acc: 1.0000
200/8145 [..............................] - ETA: 31s - loss: 0.0186 - acc: 0.9950    
300/8145 [>.............................] - ETA: 35s - loss: 0.0125 - acc: 0.9967
400/8145 [>.............................] - ETA: 32s - loss: 0.0094 - acc: 0.9975
500/8145 [>.............................] - ETA: 30s - loss: 0.0153 - acc: 0.9960
...
7900/8145 [============================>.] - ETA: 0s - loss: 0.1256 - acc: 0.9854
8000/8145 [============================>.] - ETA: 0s - loss: 0.1261 - acc: 0.9855
8100/8145 [============================>.] - ETA: 0s - loss: 0.1285 - acc: 0.9854
8145/8145 [==============================] - 29s 4ms/step - loss: 0.1293 - acc: 0.9854 - val_loss: 1.0597 - val_acc: 0.8742
 
Test accuracy: 0.8767123321648251


评估模型

Python

for i in range(10):
    prediction = model.predict(np.array([x_test[i]]))
    predicted_label = text_labels[np.argmax(prediction[0])]
    print(test_files_names.iloc[i])
    print('Actual label:' + test_tags.iloc[i])
    print("Predicted label: " + predicted_label)


在Fit方法训练了我们的数据集之后,我们将如上所述评估模型。

混淆矩阵

混淆矩阵是可视化模型准确性的最佳方法之一。

保存模型

通常,深度学习的用例就像在不同的会话中进行数据训练,而使用训练后的模型进行预测一样。

# 创建一个HDF5文件'my_model.h5'
model.model.save('my_model.h5')
 
# 保存令牌生成器,即词汇表
with open('tokenizer.pickle', 'wb') as handle:
    pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)


Keras没有任何实用程序方法可将Tokenizer与模型一起保存。我们必须单独序列化它。

加载Keras模型

Python

预测环境还需要注意标签。

encoder.classes_ #标签二值化


预测

如前所述,我们已经预留了一些文件进行实际测试。

Python

labels = np.array(['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x',
'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball',
'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space',
'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast',
'talk.politics.misc', 'talk.religion.misc'])
 ...
for x_t in x_tokenized:
    prediction = model.predict(np.array([x_t]))
    predicted_label = labels[np.argmax(prediction[0])]
    print("File ->", test_files[i], "Predicted label: " + predicted_label)
    i += 1


输出

File -> C:DL20news-bydate20news-bydate-testcomp.graphics38758 Predicted label: comp.graphics
File -> C:DL20news-bydate20news-bydate-testmisc.forsale76115 Predicted label: misc.forsale
File -> C:DL20news-bydate20news-bydate-testsoc.religion.christian21329 Predicted label: soc.religion.christian


我们知道目录名是文件的真实标签,因此上述预测是准确的。

结论

在本文中,我们使用Keras python库构建了一个简单而强大的神经网络。

相关文章
|
22天前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
147 2
|
1天前
|
存储 安全 网络安全
云计算与网络安全:保护数据的新策略
【10月更文挑战第28天】随着云计算的广泛应用,网络安全问题日益突出。本文将深入探讨云计算环境下的网络安全挑战,并提出有效的安全策略和措施。我们将分析云服务中的安全风险,探讨如何通过技术和管理措施来提升信息安全水平,包括加密技术、访问控制、安全审计等。此外,文章还将分享一些实用的代码示例,帮助读者更好地理解和应用这些安全策略。
|
21天前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
98 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
5天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。
|
8天前
|
存储 安全 网络安全
云计算与网络安全:如何保护您的数据
【10月更文挑战第21天】在这篇文章中,我们将探讨云计算和网络安全的关系。随着云计算的普及,网络安全问题日益突出。我们将介绍云服务的基本概念,以及如何通过网络安全措施来保护您的数据。最后,我们将提供一些代码示例,帮助您更好地理解这些概念。
|
1月前
|
SQL 安全 测试技术
网络安全与信息安全:保护数据的艺术
【9月更文挑战第36天】在数字化时代,网络安全和信息安全已成为维护个人隐私和企业资产的基石。本文深入探讨了网络安全漏洞、加密技术以及安全意识的重要性,旨在为读者提供一份知识宝典,帮助他们在网络世界中航行而不触礁。我们将从网络安全的基本概念出发,逐步深入到复杂的加密算法,最后强调培养安全意识的必要性。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你打开一扇了解和实践网络安全的大门。
34 2
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
48 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码