matlab求解方程和多元函数方程组

简介: matlab求解方程和多元函数方程组
  1. 核心函数solve
    一般形式 S=solve(eqns,vars,Name,Value) ,其中:

eqns是需要求解的方程组

vars是需要求解的变量;

Name-Value对用于指定求解的属性(一般用不到);

S是结果,对应于vars中变量;

  1. 单个方程求解

方程:sin(x)=1

代码:

syms x; %定义x是一个未知量
eqn=sin(x)==1; % 定义方程,eqn只是一个代号,代表sin(x)==1
solX=solve(eqn,x) % 求方程eqn中的x,放入solX中

结果:

说明: MATLAB定义方程用的是 == 符号,就是这样规定的哈。

注意: 细心的同学应该发现了,本例的解实际上应该是 pi/2+2k*pi ,怎么得到呢?

添加Name-Value对即可解决,输入以下代码:

syms x; %定义x是一个未知量
eqn=sin(x)==1; % 定义方程,eqn只是一个代号,代表sin(x)==1
[solX,params,cond]=solve(eqn,x,'ReturnConditions',true) % 求方程eqn中x的所有解,放入solX中,params是参数,cond存储参数性质

得到理想结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8vvOBsvD-1686227552946)(2023-06-07-20-05-48.png)]

MATLAB 中求解方程和多元方程组可以使用 solve 函数。在求解方程时,需要将方程转化为形如 f ( x ) = 0 f(x) = 0f(x)=0 的函数形式,并进行输入。在求解多元方程组时,则需要将多个方程构成一个向量形式。

举一个简单的例子,假设我们要求解以下一元二次方程

3 x 2 − 4 x + 2 = 0 3 x^2 - 4x + 2 = 03x24x+2=0

通过将方程移项可得到:

f ( x ) = 3 x 2 − 4 x + 2 = 0 f(x) = 3 x^2 - 4x + 2 = 0f(x)=3x24x+2=0

我们可以直接将这个 f ( x ) f(x)f(x) 函数输入 solve 函数进行求解:

% 定义方程
syms x;
eqn = 3*x^2 - 4*x + 2 == 0;
% 求解方程
sol = solve(eqn,x);
% 输出结果
disp(sol);

运行程序后,会输出方程的解:

sol =
  2^(1/2)/3 + 4/3
 -2^(1/2)/3 + 4/3

其中,最后一行输出了方程的两个根。

除此之外,在求解多元方程组时,也可以使用 solve 函数。例如,假设我们要求解以下多元方程组:


image.png

将方程组中的每个方程写成形如 f ( x 1 , x 2 , x 3 ) = 0 的函数形式,并输入 solve 函数进行求解即可:

% 定义方程组
syms x y z;
eqn1 = 2*x + y - z == 1;
eqn2 = x - y + z == 2;
eqn3 = x + 2*y - 3*z == -1;
% 求解方程组
[solx, soly, solz] = solve(eqn1, eqn2, eqn3, x, y, z);
% 输出结果
disp(solx);
disp(soly);
disp(solz);

运行程序后,会输出方程组的三个变量的解。

需要注意的是,在使用 solve 函数时,需要将待求解的未知变量标记为符号类型 sym。同时,对于非线性方程或多元方程组, solve 函数可能无法找到精确解或者找到所有实数根,因此需要根据具体问题进行分析。

除了 solve 函数外,Matlab 中还提供了一些其他函数来求解方程和多元方程组。以下是一些常用的函数:

  • fzero:用于求解一个非线性方程 f ( x ) = 0的根。
  • fsolve:用于求解一个多变量非线性方程组 F ( x 1 , x 2 , . . . , x n ) = 0的解。
  • vpasolve:用于求解含有符号变量的方程或方程组的解,例如解析方程或微分方程等。

这些函数在用法上略有不同,但都可以解决方程和多元方程组的问题。下面以 fsolve 函数为例进行说明。

假设我们需要解以下的非线性方程组:


image.png


我们可以使用 fsolve 函数来求解该方程组的解。首先需要定义一个匿名函数,输入变量为一个列向量 x = [ x 1 , x 2 ] ,输出变量为一个列向量 F = [ f 1 ( x 1 , x 2 ) , f 2 ( x 1 , x 2 ) ] ,即方程的左侧与右侧求差值的结果。

% 定义匿名函数
fun = @(x)[exp(x(2)) + x(1) - 10; x(1)*sin(x(2)) + x(2) - 3];
% 定义初值
x0 = [0;0];
% 求解方程组
[x,fval,exitflag] = fsolve(fun, x0);

其中,fun 函数定义了方程组的左侧和右侧之间的差值,x0 是变量的一个初值, fsolve 函数将通过迭代来寻找合适的解。结果包括求解出来的变量值 x,方程组的残差 fval 和退出标志 exitflag。查阅文档可以了解各个退出标志的含义。

需要注意的是,对于非线性方程或多元方程组的求解,可能会出现无法求解或求解不唯一的情况,因此需要根据具体问题进行分析。

除了 fsolve 函数外,Matlab 中还提供了一些其他求解方程和多元方程组的函数。以下是一些常用的函数:

  • roots:求解一个多项式方程image.png的根。
  • polyfitpolyval 组合:用于拟合数据,并返回相应的多项式系数。
  • ode45:求解常微分方程问题。

这些函数的使用方法和注意事项可以在 Matlab 官方文档中查看。需要注意的是,在求解各种类型的方程和多元方程组时,需要综合考虑模型的适用性、精度与效率等因素,以得到最好的结果。

  1. 带未知参数的方程
    方程: ax²+bx+c=0
    代码:
syms x a b c; %定义x a b c是未知量
eqn=a*x^2+b*x+c==0;% 定义方程
solX=solve(eqn,x) % 解方程

结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JU3I5asH-1686563889619)(2023-06-07-20-06-08.png)]

说明: 这里就简单的把未知参数用syms声明就可以了。

  1. 多元方程组求解
    方程:

代码:

syms u v; % 定义u v 是未知量
eqns=[2*u+v==0,u-v==1]; % 定义方程组
vars=[u,v]; % 定义求解的未知量
[solU,solV]=solve(eqns,vars) % 求解eqns中的vars未知量,分别存储
sol=solve(eqns,vars); % 求解eqns中的vars未知量,以结构体的形式存储到sol中
solU1=sol.u % 从sol结构体中取出变量u的解
solV1=sol.v % 从sol结构体中取出变量v的解

结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4t7C6TKY-1686563889620)(2023-06-07-20-07-10.png)]

说明: 本例中有两个求解的变量,有两种存储方式,已在代码中介绍。

  1. 数值近似解
    方程: sin(x)==x²-1
    代码:
syms x; % 定义x是未知量
fplot(sin(x),[-2,2]); % 绘制y=sin(x)的图像
hold on; 
fplot(x^2-1,[-2,2]); % 绘制y=x^2-1的图像
hold off;
eqn=sin(x)==x^2-1; % 定义方程
solX=solve(eqn,x) % 直接求解,返回其找到的第一个数值近似解
solX1=vpasolve(eqn,x,[0,2]) % vpa求解,返回其在范围[0,2]内找到的第一个数值近似解

结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vbsvsdzS-1686563889620)(2023-06-07-20-07-22.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Q9SsTVYR-1686563889621)(2023-06-07-20-07-28.png)]

说明: 此例中无法求得精确解,slove会返回求得的第一个数值近似解,vpasolve可以返回指定范围内第一个近似解

  1. 无解的情况

方程:

代码:

syms x; % 定义x是未知量
eqn=[3*x+2==0,3*x+1==0]; % 定义函数
solX=solve(eqn,x) % 求解

结果:
















目录
相关文章
|
8月前
|
索引
matlab--------矩阵重构,重新排列的相关函数说明
matlab--------矩阵重构,重新排列的相关函数说明
228 0
matlab--------矩阵重构,重新排列的相关函数说明
matlab定点化_(fi函数)
matlab定点化_(fi函数)
|
14天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
3月前
|
算法 数据可视化 数据处理
MATLAB内置函数
【10月更文挑战第6天】本文详细介绍了MATLAB的内置函数和自定义函数,涵盖数学计算、矩阵操作、图形绘制等方面。通过具体代码示例,展示了如何使用内置函数和创建自定义函数,以及它们在性能、灵活性和可读性上的优劣。同时,文章还讨论了函数文件与脚本文件的区别,匿名函数和函数句柄的高级应用,帮助读者更好地利用MATLAB解决复杂问题。
88 1
|
3月前
|
存储 机器学习/深度学习 数据可视化
MATLAB脚本与函数
【10月更文挑战第4天】本文介绍了MATLAB脚本与函数的基本概念及编写方法,涵盖脚本和函数的创建、运行及优缺点,通过示例帮助初学者快速上手。同时,文章还涉及数据类型、控制结构、数据可视化、文件操作、错误处理等内容,提供了丰富的示例和学习资源,助力初学者逐步掌握MATLAB编程。
148 3
|
5月前
|
Python
【Python】实现MATLAB中计算两个矩形相交面积的rectint函数
Python中实现MATLAB中rectint函数的方法,该函数用于计算两个矩形相交区域的面积,并通过定义Rectangle类和calc_area函数展示了如何计算两个矩形的交集面积。
75 1
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。
|
7月前
|
算法 数据可视化 数据挖掘
MATLAB中常用的数学函数及其应用示例
MATLAB中常用的数学函数及其应用示例
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
传感器 数据采集 数据处理
MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化
MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化