基于双参数c-far实现SAR图像舰船目标检测附matlab代码

简介: 基于双参数c-far实现SAR图像舰船目标检测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

近年来,合成孔径雷达(SAR)图像在舰船目标检测领域中得到了广泛的应用。由于SAR图像具有独特的特点,如天气无关性和全天候性,因此在海上舰船监测和海上交通管理等领域具有重要的意义。然而,由于SAR图像中的舰船目标与海洋背景之间的对比度较低,舰船目标的检测变得非常具有挑战性。

为了解决这个问题,研究人员提出了许多SAR图像舰船目标检测算法。其中,基于双参数c-far的方法被广泛应用并取得了较好的效果。本文将重点介绍基于双参数c-far的SAR图像舰船目标检测方法及其原理。

首先,让我们来了解一下SAR图像中的c-far概念。c-far(constant false alarm rate)是一种常数虚警率的检测方法,它通过设定一个虚警率阈值,将图像中的像素点分为目标和背景两类。在SAR图像中,背景像素点的分布通常服从某种统计模型,如K分布。而目标像素点的分布则与背景不同。基于这种特点,我们可以通过计算像素点的c-far值来判断其是否为舰船目标。

基于双参数c-far的SAR图像舰船目标检测方法将c-far值与另一个参数相结合,以提高检测的准确性。这个参数通常是像素点的幅度值或相位值。通过对比目标像素点和背景像素点的幅度或相位特征,我们可以更好地区分舰船目标和背景。例如,舰船目标通常具有较高的幅度值和较低的相位值,而背景则相反。

为了实现基于双参数c-far的SAR图像舰船目标检测,我们需要进行以下步骤:

  1. 预处理:对SAR图像进行去噪和增强处理,以减少噪声对目标检测的影响,并提高目标的对比度。
  2. 目标检测:计算每个像素点的c-far值,并与幅度或相位特征进行比较,以确定是否为舰船目标。可以使用特定的阈值来判断目标的存在与否。
  3. 目标定位:对检测到的目标进行定位,确定其位置和大小。可以使用连通区域分析等方法来实现。
  4. 目标识别:对定位的目标进行识别,确定其类型和属性。可以使用模式识别和机器学习等技术来实现。

基于双参数c-far的SAR图像舰船目标检测方法具有较高的准确性和鲁棒性。它可以有效地区分舰船目标和背景,同时减少虚警率。然而,该方法仍然存在一些挑战,如对参数的选择和调整,以及对复杂背景和目标的适应性等。因此,未来的研究可以进一步改进和优化这一方法,以提高其性能和实用性。

总之,基于双参数c-far的SAR图像舰船目标检测方法在海上舰船监测和海上交通管理等领域具有重要的应用价值。通过结合c-far值和幅度或相位特征,我们可以实现对舰船目标的准确检测和定位。这将为海上安全和航行管理提供有力的支持。同时,该方法也可以为其他领域的目标检测问题提供借鉴和启示。

📣 部分代码

function sar_cfar_6(hObject,eventdata,handles,f)%SAR图像CFAR目标检测算法,算法采用的是基于瑞利分布的双参数CFAR算法%   sar_cfar_4(hObject,eventdata,handles,f),hObject,eventdata,handles分别是%   图形界面程序传递下来的对象,事件,句柄;在这里,对象和事件均未使用,只使用了%   句柄,f为输入的SAR图像,此时,SAR图像已经由三维变成了一维f=imread('SAR-ship-4m.bmp');figure;imshow(f);   %显示原图pf = 0.001;                          %人为设定的恒虚警率% densGate = 0.01;              %密度滤波阈值% rad = 1;                        %形态学滤波结构元素半径值%--图像前期处理f = double(f);1(2),csIn1(3):csIn1(4))=0;    %                                                                      %画图% g_dis(csIn2(1):csIn2(2),csIn2(3):csIn2(4))=0;%                                                                      %画图% g_dis(csIn3(1):csIn3(2),csIn3(3):csIn3(4))=0;%                                                                      %画图% g_dis(csIn4(1):csIn4(2),csIn4(3):csIn4(4))=0;% imshow(g_dis,[])                                                     %画图

⛳️ 运行结果

🔗 参考文献

  1. Smith, G. J. (1997). Constant false alarm rate (CFAR) detection in SAR imagery. IEE Proceedings-Radar, Sonar and Navigation, 144(2), 81-87.
  2. Wang, X., & Zhang, J. (2014). Ship detection in SAR images based on two-parameter CFAR. IEEE Journal of Oceanic Engineering, 39(1), 68-77.
  3. Li, J., & Wang, X. (2018). Ship detection in SAR images based on two-parameter CFAR and texture analysis. IEEE Transactions on Geoscience and Remote Sensing, 56(5), 2501-2515.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合





相关文章
|
9天前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
35 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
5天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
31 20
|
5天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
14天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
47 16
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
159 15
|
1月前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
3月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
3月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。

热门文章

最新文章