【LSTM回归预测】基于哈里斯鹰算法优化长短时记忆HHO-biLSTM风电数据预测(含前后对比)附Matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【LSTM回归预测】基于哈里斯鹰算法优化长短时记忆HHO-biLSTM风电数据预测(含前后对比)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

在过去的几十年里,风能作为一种可再生能源得到了广泛的关注和应用。风能的可再生特性和对环境的友好性使其成为替代传统能源的理想选择。然而,风能的不稳定性和难以预测性使其在实际应用中面临一些挑战。为了解决这个问题,许多研究者开始探索使用机器学习算法来预测风电发电量。

长短时记忆(LSTM)是一种常用的循环神经网络(RNN)模型,它在处理序列数据和时间序列数据方面表现出色。LSTM模型可以学习和记忆长期依赖关系,因此在风电数据预测中具有潜力。然而,传统的LSTM模型在处理大规模数据集时存在一些问题,例如训练时间长、参数调整困难等。

为了改进传统的LSTM模型,本文提出了一种基于哈里斯鹰优化算法(HHO)的优化方法,将其应用于LSTM模型中。哈里斯鹰优化算法是一种新兴的全局优化算法,它模拟了鹰群的觅食行为,并通过迭代搜索来优化模型参数。通过引入HHO算法,我们可以加快LSTM模型的收敛速度,提高模型的准确性和稳定性。

为了验证提出的HHO-biLSTM模型的有效性,我们使用了一组真实的风电数据集进行实验。首先,我们将原始数据进行预处理,包括数据清洗、特征提取和标准化等。然后,我们将数据集划分为训练集和测试集,并使用HHO-biLSTM模型对风电发电量进行预测。最后,我们将HHO-biLSTM模型的预测结果与传统的LSTM模型进行对比分析。

实验结果表明,与传统的LSTM模型相比,HHO-biLSTM模型在风电数据预测中表现出更好的性能。通过引入HHO算法优化LSTM模型,我们可以显著提高模型的准确性和稳定性。此外,HHO-biLSTM模型还能够更好地捕捉风能数据的非线性特征,从而提高了预测的精度。

综上所述,本文提出了一种基于哈里斯鹰算法优化的长短时记忆HHO-biLSTM模型,用于风电数据预测。实验结果表明,该模型在风能数据预测中具有良好的性能和稳定性。未来,我们将进一步优化HHO-biLSTM模型,并探索其在其他领域的应用潜力。

🔥核心代码

% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

❤️ 运行结果

⛄ 参考文献

[1] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [2] Zhang, X., Zhang, L., & Wang, J. (2018). Wind power prediction based on LSTM recurrent neural network. Energies, 11(3), 539.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计






相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 人工智能 Rust
MindSpore QuickStart——LSTM算法实践学习
MindSpore QuickStart——LSTM算法实践学习
40 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
【优秀python系统毕设】基于Python flask的气象数据可视化系统设计与实现,有LSTM算法预测气温
本文介绍了一个基于Python Flask框架开发的气象数据可视化系统,该系统集成了数据获取、处理、存储、LSTM算法气温预测以及多种数据可视化功能,旨在提高气象数据的利用价值并推动气象领域的发展。
151 1
|
3月前
|
机器学习/深度学习 数据采集 存储
基于Python+flask+echarts的气象数据采集与分析系统,可实现lstm算法进行预测
本文介绍了一个基于Python、Flask和Echarts的气象数据采集与分析系统,该系统集成了LSTM算法进行数据预测,并提供了实时数据监测、历史数据查询、数据可视化以及用户权限管理等功能。
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于Python flask的豆瓣电影数据分析可视化系统,功能多,LSTM算法+注意力机制实现情感分析,准确率高达85%
本文介绍了一个基于Python Flask框架的豆瓣电影数据分析可视化系统,该系统集成了LSTM算法和注意力机制进行情感分析,准确率高达85%,提供了多样化的数据分析和情感识别功能,旨在帮助用户深入理解电影市场和观众喜好。
134 0
|
5月前
|
机器学习/深度学习 存储 人工智能
算法金 | LSTM 原作者带队,一个强大的算法模型杀回来了
**摘要:** 本文介绍了LSTM(长短期记忆网络)的发展背景和重要性,以及其创始人Sepp Hochreiter新推出的xLSTM。LSTM是为解决传统RNN长期依赖问题而设计的,广泛应用于NLP和时间序列预测。文章详细阐述了LSTM的基本概念、核心原理、实现方法和实际应用案例,包括文本生成和时间序列预测。此外,还讨论了LSTM与Transformer的竞争格局。最后,鼓励读者深入学习和探索AI领域。
60 7
算法金 | LSTM 原作者带队,一个强大的算法模型杀回来了
|
5月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
108 6
|
6月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
185 4
|
5月前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
5月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
56 0