多元回归预测 | Matlab粒子群优化算法优化正则化极限学习机(PSO-RELM)回归预测

简介: 多元回归预测 | Matlab粒子群优化算法优化正则化极限学习机(PSO-RELM)回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

摘要: 风电回归预测在能源领域具有重要的应用价值。为了提高风电回归预测的准确性和鲁棒性,本文提出了一种基于粒子群算法优化的鲁棒极限学习机(PSO-RELM)方法。该方法通过引入粒子群算法对极限学习机进行参数优化,以提高其泛化能力和稳定性。实验结果表明,PSO-RELM方法在风电回归预测中具有较好的性能,能够有效地提高预测精度和鲁棒性。

关键词:风电回归预测,粒子群算法,极限学习机,鲁棒性,泛化能力

引言: 随着能源需求的增加和环境保护的要求,风电作为一种清洁能源逐渐得到了广泛的应用和发展。然而,由于风电的不稳定性和随机性,风电的回归预测一直是一个具有挑战性的问题。传统的风电回归预测方法往往依赖于经验模型和统计方法,其预测精度和鲁棒性有待提高。因此,开发一种高效准确的风电回归预测方法具有重要的理论和实际意义。

方法: 本文提出了一种基于粒子群算法优化的鲁棒极限学习机(PSO-RELM)方法来解决风电回归预测问题。该方法首先利用极限学习机(ELM)作为基本回归模型,ELM具有快速训练和良好的泛化能力。然后,引入粒子群算法(PSO)对ELM的隐含层权重和偏置进行优化,以提高其泛化能力和稳定性。最后,利用经过优化的ELM模型进行风电回归预测。

实验结果: 为了验证PSO-RELM方法的性能,本文在风电回归预测数据集上进行了实验。实验结果表明,PSO-RELM方法相比于传统的ELM方法具有更高的预测精度和鲁棒性。此外,PSO-RELM方法在不同风电预测数据集上都表现出了较好的性能,证明了其泛化能力和稳定性。

讨论: PSO-RELM方法的优势在于引入了粒子群算法对ELM进行参数优化,从而提高了其泛化能力和稳定性。此外,PSO-RELM方法具有较快的训练速度和较低的计算复杂度,适用于大规模风电回归预测问题。然而,PSO-RELM方法也存在一些局限性,例如对初始参数的敏感性和易受局部最优解的影响。因此,未来的研究可以进一步改进PSO-RELM方法,提高其性能和鲁棒性。

结论: 本文提出了一种基于粒子群算法优化的鲁棒极限学习机(PSO-RELM)方法用于风电回归预测。实验结果表明,PSO-RELM方法在风电回归预测中具有较好的性能,能够有效地提高预测精度和鲁棒性。因此,PSO-RELM方法可以作为一种有效的风电回归预测方法应用于能源领域。

核心代码

function [output] = my_map(type, raw_data, raw_data_max, raw_data_min, max, min)if type ~= 0    output = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min);endif type ~= 1     output = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min);endendfunction [out] = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min)    for i = 1:length(raw_data')        out(i) = (max - min) * (raw_data(i) - raw_data_min) / (raw_data_max - raw_data_min) + min;    endendfunction [out] = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min)    for i = 1:length(raw_data')        out(i) = (raw_data(i) - min) * (raw_data_max - raw_data_min) / (max - min) + raw_data_min;    endend

⛄ 运行结果

⛄ 参考文献

[1] 张潇,王锋.一种基于粒子群优化SVR支持向量回归算法预测稻米粮堆黄度指数的方法:CN201910860446.4[P].CN110598321A[2023-08-28].

[2] 江礼凯,周志宇,李清木.基于粒子群算法优化正则化极限学习机的纺织品色差检测[J].  2017.

[3] 郭博臻,白一鸣,赵永生.基于PSO-RELM的绞吸挖泥船产量预测及其可视化辅助决策[J].水运工程, 2021(9):6.DOI:10.3969/j.issn.1002-4972.2021.09.026.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计


相关文章
|
1月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
1月前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
WK
|
2月前
|
算法
粒子群算法的优缺点分别是什么
粒子群优化(PSO)算法概念简单,易于编程实现,参数少,收敛速度快,全局搜索能力强,并行处理高效。然而,它也容易陷入局部最优,参数设置敏感,缺乏坚实的理论基础,且性能依赖初始种群分布,有时会出现早熟收敛。实际应用中需根据具体问题调整参数以最大化优势。
WK
291 2
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
WK
|
2月前
|
算法 决策智能
粒子群算法的缺点是什么
粒子群算法(PSO)虽具优点,但存在明显缺点:易陷局部最优、收敛精度低、难解离散及组合优化问题、缺乏精密搜索方法、理论基础薄弱、参数选择困难、收敛速度受问题复杂度影响。为克服这些问题,研究者提出引入动态惯性权重、调整学习因子、混合算法等改进策略,提高算法性能与适用范围,但仍需进一步研究以应对更复杂多样的问题。
WK
102 0
WK
|
2月前
|
机器学习/深度学习 算法 决策智能
什么是粒子群算法
粒子群算法(PSO)是一种元启发式优化算法,通过模拟鸟群或鱼群行为进行优化搜索。1995年由Kennedy和Eberhart提出,基于鸟类群体行为建模。算法通过粒子在搜索空间中移动,不断更新位置和速度,逐步逼近最优解。其流程包括初始化、评估、更新最佳位置及速度,直至满足终止条件。该算法具有简单性、全局搜索能力和良好收敛性,并广泛应用于函数优化、神经网络训练等多个领域。为克服局部最优和收敛速度慢的问题,已有多种改进策略。
WK
50 0
|
3月前
|
数据采集 算法
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码