基于粒子群算法的分布式电源配电网重构优化matlab仿真

简介: 本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。

1.课题概述
基于粒子群算法的分布式电源配电网重构优化。通过Matlab仿真,对比优化前后

1.节点的电压值
2.线路的损耗,这里计算网损
3.负荷均衡度
4.电压偏离
5.线路的传输功率
6.重构后和重构前开关变化状态

2.系统仿真结果

0dd9deba8f3dc84ec701654f842e2455_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg


  15.0000 + 0.0000i
  14.9761 + 0.0002i
  14.8564 + 0.0014i
  14.8396 + 0.0000i
  14.8257 - 0.0006i
  14.7965 - 0.0093i
  14.7898 - 0.0164i
  14.3003 - 0.3734i
  14.2857 - 0.3291i
  14.2937 - 0.3099i
  14.2968 - 0.3073i
  14.3781 - 0.4659i
  14.3691 - 0.4669i
  14.2306 - 0.2775i
  14.2385 - 0.2765i
  14.2389 - 0.2553i
  14.2331 - 0.2024i
  14.2325 - 0.1839i
  14.9747 - 0.0003i
  14.4088 - 0.4626i
  14.3907 - 0.4526i
  14.4048 - 0.4598i
  14.7643 - 0.0073i
  14.5812 - 0.0374i
  14.4344 - 0.0587i
  14.7945 - 0.0095i
  14.7931 - 0.0096i
  14.3626 - 0.0771i
  14.3669 - 0.0753i
  14.3191 - 0.0713i
  14.2603 - 0.1246i
  14.2465 - 0.1425i
  14.2405 - 0.1634i

2.线路的损耗,这里计算网损
PLoss0 =

  139.9155
PLoss1 =

   56.7952

损耗降低百分比:

ans =

   59.4075

3.负荷均衡度
ans =

    0.0196

4.电压偏离
ans =

   27.8995

5.线路的传输功率
Powers =

   22.5049
   22.5231
   22.5006
   22.5004
   22.5006
   22.5000
   22.9657
   22.5014
   22.5003
   22.5001
   22.5765
   22.5000
   22.5373
   22.5001
   22.5004
   22.5008
   22.5003
   22.5000
   22.6966
   22.5004
   22.5001
   22.5129
   22.5236
   22.5152
   22.5000
   22.5000
   22.6011
   22.5000
   22.5036
   22.5033
   22.5007
   22.5004
   22.5036
   22.5012
   22.5002
   22.5005
   22.5048

6.重构后和重构前开关变化状态
Switch0 =

     7     1     3     2    16


Switch1 =

     2     4     4     4    15


swicths =

     2     4     4     4    15
     3     5     5     5    16
AI 代码解读

3.核心程序与模型
版本:MATLAB2017B

plot(objs,'linewidth',2);
xlabel('迭代次数');
ylabel('适应度值');
grid on


%1、节点的电压值
Node_volgates{indxmin2}
%2、线路的损耗,这里计算网损
%重构前
PLoss0 = Loss0(indxmin_,:) 
%重构后
PLoss1 = min(Loss1)
disp('损耗降低百分比:');
100*abs(PLoss0-PLoss1)/PLoss0
%负荷均衡度,这里均衡采用了方差来计算,值越小,均衡度越高
fobj2(indxmin)

%电压偏离
fobj1(indxmin)



%3、线路的传输功率
case33;
Node_voltage = Node_volgates{indxmin2};
for iii = 1:length(Matrix1)
    Powers(iii,1) =  abs((abs(Node_voltage(Matrix1(iii,2))-Node_voltage(Matrix1(iii,3))))^2/(Matrix1(iii,4))+Rz); 
end
Powers
%4、重构后和重构前开关变化状态
%重构前
Switch0 = Best_pso_(indxmin_,:) 
%重构后
Switch1 = Best_pso(indxmin2,:) 

%5、如果出现故障,及一条线路断开之后开关变化状态
%这里进行断开支路测试
for i = 1:Swicth
    swicths(:,i) = [Matrix1(Switch1(i),2:3)]';
end
swicths
02_054m
AI 代码解读

4.系统原理简介
分布式电源配电网重构(Distribution Network Reconfiguration,DNR)是一个重要的电力系统优化问题,旨在通过改变配电网中的开关状态,以最小化网络损耗、提高供电可靠性和优化分布式电源的接入效益。粒子群优化算法(Particle Swarm Optimization, PSO)作为一种启发式全局优化方法,被广泛应用于解决此类复杂优化问题。

4.1基本PSO算法原理
在PSO中,每个粒子表示配电网重构的一种可能解(即一种开关状态组合),其位置矢量X_i代表第i个粒子所对应的解空间中的解。每个粒子具有速度矢量V_i,用于更新其位置:

ae396ab07e64c292c0257c02ee72f007_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

w是惯性权重,用于平衡全局搜索和局部搜索。
c_1 和 c_2 是加速常数,控制个体最优解(P_i)和全局最优解(G_i)对当前粒子的影响。
r_1 和 r_2 是随机变量,在[0, 1]之间,用于引入随机性。
P_i 是粒子i的历史最优位置(对应最低目标函数值的开关状态组合)。
G 是整个种群中的全局最优位置(所有粒子经历过的最优开关状态组合)。
4.2配电网重构的目标函数
在基于粒子群算法的分布式电源配电网重构优化问题中,目标函数通常结合了多个评价指标以达到综合最优。这里主要考虑以下三个关键因素:

   节点电压偏离(Voltage Deviation) 节点电压偏离反映了配电网络重构后各节点实际电压与额定电压之间的差异。其数学表示通常采用均方误差的形式:
AI 代码解读

67249aa810931ca0d69f3e6adc7650ef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,Ui 是第 i 个节点的实际电压,Uref 是参考电压或额定电压,N 是总节点数。

   线路负荷均衡度(Load Balance Index) 线路负荷均衡度衡量的是整个配电网内各线路负载分布的均匀程度。一种可能的度量方法是计算所有线路负荷与其平均值的标准差:
AI 代码解读

d134092dabfeae40ae999ddccbada9d0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,Pj 表示第 j 条线路的功率负荷,ˉPˉ 是所有线路负荷的平均值,M 是线路总数。

    线路损耗(Line Losses) 线路损耗包括电阻损耗和电抗损耗,在考虑分布式电源接入的情况下,需要根据重构后的网络拓扑结构和运行状态计算总的线路损耗:
AI 代码解读

2445229a3653a7913783bcf7a3980c34_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

这里,Rj 和Xj 分别为第 j 条线路的电阻和感抗,Ij 是通过该线路的电流。

将上述三个指标整合成一个复合目标函数,可以采用加权和的方式表达:

e570322bcdc849cb8a8c6c92bbb53270_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   粒子群算法则用于求解此复合目标函数的最小化问题,通过不断迭代更新每个粒子(即潜在的网络重构方案)的位置和速度,最终找到一组最优的开关状态组合。
AI 代码解读
目录
打赏
0
8
8
0
185
分享
相关文章
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
Weevil-Optimizer象鼻虫优化算法的matlab仿真实现
本项目实现了Weevil-Optimizer(象鼻虫优化算法)的MATLAB仿真,展示算法在不同适应度函数下的优化收敛曲线。程序通过智能搜索策略模拟象鼻虫觅食行为,在解空间中寻找最优解。核心代码包括排序、选择、更新操作,并绘制结果图示。测试环境为MATLAB 2022A,支持Ackley、Beale、Booth、Rastrigin和Rosenbrock函数的对比分析。 虽然Weevil-Optimizer是一个虚构的概念,但其设计思路展示了如何基于自然界生物行为模式开发优化算法。完整程序运行后无水印,提供清晰的可视化结果。
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。
基于线性核函数的SVM数据分类算法matlab仿真
本程序基于线性核函数的SVM算法实现数据分类,使用MATLAB2022A版本运行。程序生成随机二维数据并分为两组,通过自定义SVM模型(不依赖MATLAB工具箱)进行训练,展示不同惩罚参数C下的分类结果及决策边界。SVM通过寻找最优超平面最大化类别间隔,实现高效分类。 核心代码包括数据生成、模型训练和结果可视化,最终绘制了两类数据点及对应的决策边界。此实现有助于理解SVM的工作原理及其在实际应用中的表现。
|
6月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
275 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
164 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
141 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等