基于ACO蚁群优化算法的WSN网络路由优化matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
简介: 摘要(Markdown格式):- 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。- 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。- 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。

1.程序功能描述
基于ACO蚁群优化算法的WSN网络路由优化,通过蚁群优化迭代,在WSN中搜索一个最短的路由路径。在仿真过程中,实时显示每一次迭代过程中找到的路径,最后输出ACO的优化迭代过程,网络路由路径的搜索结果。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

e73b3b9c5ab0027928903b876c9af67e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

a2cec53f4a6e437555a47a351ba565f6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

```for ij1=1:Iter% 循环Iter次
ij1
%蚁群更新
for ij2=1:Naco
MY2=ant(ij2).Tour;
MY2=[MY2 MY2(1)]; % 将蚂蚁的旅行路径首尾相接,构建一个新的路径
for l=1:Num
idx1=MY2(l);
idx2=MY2(l+1);
tau(idx1,idx2)=tau(idx1,idx2)+1/ant(ij2).Cost;% 更新信息素浓度,即转移概率
end
end
%% 蒸发信息素 %蒸发
tau=(1-rho)*tau;% 根据蒸发率rho,更新信息素浓度
%存储最佳成本
BestJ(ij1)=BestJJ.Cost;% 存储最优解的成本 %存储最佳成本
figure(1);
func_Solution(BestJJ.Tour,MY);
pause(0.01);

end

figure;
plot(BestJ);
xlabel('Iteration');
ylabel('Best J');
grid on;
00002

```

4.本算法原理
ACO蚁群优化算法是一种基于自然界中蚂蚁寻找食物的行为而发展起来的优化算法。在WSN(无线传感器网络)中,这种算法可以用于优化路由,从而提高网络的性能。ACO蚁群优化算法的基本原理是模仿自然界中蚂蚁寻找食物的行为。在蚂蚁寻找食物的过程中,它们会释放一种称为“信息素”的物质,这种物质可以引导其他蚂蚁找到食物来源。在ACO中,每个节点都表示一个可能的路径,每个蚂蚁都通过在节点之间移动来搜索最优路径。ACO蚁群优化算法的主要数学公式包括信息素更新公式和蚂蚁选择公式。

4.1信息素更新

   信息素更新是在蚂蚁完成一次遍历后进行的。每只蚂蚁在遍历过程中,会在每个节点上留下信息素。信息素的数量与节点的质量成正比,即如果节点质量好(即路径短、能量消耗少等),则在该节点上留下的信息素就多。更新公式如下:

Δτ(i,j) = Δτ(i,j) + ατ(i,j)η(i,j)
其中,Δτ(i,j)是节点(i,j)上的信息素增量,α是信息素挥发系数,τ(i,j)是节点(i,j)上的信息素数量,η(i,j)是节点(i,j)的质量评估值。

4.2蚂蚁选择

    在ACO中,每只蚂蚁根据当前节点的邻居节点上的信息素浓度来选择下一个要访问的节点。节点(i,j)对蚂蚁的吸引力与该节点上的信息素浓度τ(i,j)成正比,与该节点到起始节点的距离d(i,j)的α次幂成反比。选择公式如下:
   P(i,j) = τ(i,j) * (1 / d(i,j))^α
  其中,P(i,j)是节点(i,j)被选择的概率,τ(i,j)是节点(i,j)上的信息素数量,d(i,j)是节点(i,j)到起始节点的距离,α是距离的衰减系数。

4.3算法流程
ACO蚁群优化算法的流程如下:

   初始化:设置蚂蚁数量、迭代次数、信息素挥发系数等信息,并初始化所有节点的信息素浓度。
   开始迭代:对于每只蚂蚁,从起始节点开始,根据选择公式选择下一个要访问的节点,直到遍历完所有节点。
   信息素更新:在每只蚂蚁完成遍历后,根据信息素更新公式更新所有节点的信息素浓度。

判断是否达到结束条件:如果达到结束条件(如迭代次数达到预设值),则停止算法;否则,返回第二步。
输出最优解:在所有遍历结果中选出最优解,即为所求的最优路径。
在WSN中,ACO蚁群优化算法可以用于优化路由。具体来说,可以将WSN中的每个节点作为可能的路径,将需要传输的数据作为目标函数,通过ACO算法搜索最优路径。在搜索过程中,每个节点会根据信息素浓度和距离等因素被赋予不同的权重,从而影响蚂蚁的选择。通过迭代搜索,最终可以得到一条从源节点到目标节点的最优路径,使得数据传输的代价最小化。

相关文章
|
13天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
13天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
13天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
19天前
|
机器学习/深度学习 算法 PyTorch
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
56 16
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
|
5天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
1月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
11天前
|
存储 监控 网络协议
了解流量探针,助你更好地优化网络
流量探针是现代网络运维中不可或缺的工具,用于实时监测网络数据包,提供一手数据。它通过镜像方式采集、过滤、分析流量,支持从二层到七层协议解码,助力网络瓶颈排查、业务性能优化及安全威胁检测。合理部署流量探针可实现精细化网络管理,提升性能与安全性。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
1月前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
125 12
|
1月前
|
传感器 算法 数据安全/隐私保护
基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真
本课题研究基于PI控制算法的异步感应电机转速控制系统,利用Simulink建模与仿真。PI控制器结合比例与积分部分,实现快速响应和稳态误差消除。系统通过速度传感器反馈实际转速,经SPWM调制驱动电机,形成闭环控制。仿真中设置不同参考速度(如600->800、1500->2200等),验证系统性能。模型基于MATLAB 2022a开发,适用于电机高效稳定运行的研究与应用。