【编程练习】收集的一些c++代码片,算法排序,读文件,写日志,快速求积分等等

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介:     写日志: class LogFile{public: static LogFile &instance(); operator FILE *() const { return m_file; }private LogFile(const char *filen...

 

 

写日志:

class LogFile
{
public:
  static LogFile &instance();
  operator FILE *() const { return m_file; }
private
  LogFile(const char *filename)
  {
     m_file = fopen(filename, "a+");
  }
  ~LogFile()
  {
     fclose(m_file);
  }
  FILE *m_file;
};

LogFile &LogFile::instance()
{
   static LogFile log("AppLog.txt");
   return log;
}

用的时候可以这么写:
fwrite("abc", 1, 3, LogFile::instance());

 

 

 

读取文件信息:

 c语言实现如下功能 输入全部文件名(绝对路径加文件名)得到,文件名,扩展名,文件长度

/* MAKEPATH.C */
#include<string.h>
#include <stdlib.h>
#include <stdio.h>

#define LENGTH 200


struct FILEHEAD
{
	char path_buffer[LENGTH];
	char filename[LENGTH];
	char ext[LENGTH];
	unsigned int length;
	
};

FILEHEAD file; 

void getFileInformation(FILEHEAD file)
{
	memset(&file,0,sizeof(file)); 
	
	//_makepath( path_buffer, "c", "\\sample\\crt\\", "makepath", "c" );
	printf( "Path created with : \n\n");
	scanf("%s",file.path_buffer);
	_splitpath( file.path_buffer, NULL, NULL, file.filename, file.ext );
	
	FILE *fp= NULL;
	fp=fopen(file.path_buffer,"r");
	if (NULL==fp)
	{
		printf("cannot open the %s \n",file.path_buffer);
		exit(0);
	}
	
	fseek(fp,0l,SEEK_END);
	file.length=ftell(fp);
	
	fclose(fp);
	fp = NULL; //需要指向空,否则会指向原打开文件地址
	
	
	
	printf( "Path extracted with _splitpath:\n" );
	//printf( "  Drive: %s\n", drive );
	//printf( "  Dir: %s\n", dir );
	printf( "  Filename: %s\n", file.filename );
	printf( "  Ext: %s\n", file.ext );
	printf( "  length is btye: %ld btye\n", file.length );
}

int main( void )
{
	
	getFileInformation(file);

	system("pause");

	return 0;
}



算法排序框架:

 

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define TRUE 1
#define FALSE 0
#define MAX 10000

typedef int KeyType;
typedef int OtherType;

typedef struct
{
	KeyType key;
	OtherType other_data;
}RecordType;


// All kinds of seek.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include "headfile.h"
#include "windows.h"
#include  "conio.h "

#include"WinBase.h"
#include "Psapi.h"

#pragma  once
#pragma  message("Psapi.h --> Linking with Psapi.lib")
#pragma  comment(lib,"Psapi.lib")


int Data[MAX]={0};

void produceData(int a[],int length)       //给数组生成数据,用于随即查找
{
	time_t t;
	srand(time(&t));
	for (int i=0;i<length;i++)
	{
		a[i]=rand()%length;
	}


}

void printData(int a[],int length)		//打印数字,到控制台,每五个换一行
{
	for (int i=0;i<length;i++)
	{
		printf("%8d",a[i]);
		if (0==i%5)
		{
			printf("\n");
		}
	}

}

double showMemoryInfo()   
{   

	double MemorySize;					//单位MB
	HANDLE handle=GetCurrentProcess();   

	PROCESS_MEMORY_COUNTERS pmc;   
	GetProcessMemoryInfo(handle,&pmc,sizeof(pmc)); 
	MemorySize=pmc.WorkingSetSize/1024;

	printf("内存使用:  %8lf \n",MemorySize);	//WorkingSetSize The current working set size, in bytes.

	return MemorySize;

} 

void writeRecordtime(unsigned rTime)//将程序结果运行时间写入文件
{
	FILE *fpRecord=NULL; 

	char *s="your programm running time is:   ";
	char *c="ms   ";

	if((fpRecord=fopen("record.txt","wt+"))==NULL) 

	{ 

		printf("Cannot open file strike any key exit!"); 

		getchar(); 

		exit(1); 

	} 

	fprintf( fpRecord, "%s", s);
	fprintf( fpRecord, "%d", rTime);
	fprintf( fpRecord, "%s", c);

	fprintf( fpRecord, "\n");
	fprintf( fpRecord, "your programm use %fMB size of memory!!!", showMemoryInfo());



	fclose(fpRecord); 


}





int _tmain(int argc, _TCHAR* argv[])
{
	produceData(Data,MAX);
	printData(Data,MAX);

	getchar();

	return 0;
}

 

 

快速求积分办法:

// Integral-romberg方法求积分.cpp : 定义控制台应用程序的入口点。
//
/*
romberg方法求积分
方法也称为逐次分半加速法。它是在梯形公式,simpson公式和newton-cotes公式之间的关系的基础上,
构造出一种加速计算积分的方法。作为一种外推算法,它在不增加计算量的前提下提高了误差的精度。
在等距基点的情况下,用计算机计算积分值通常都采用吧区间逐次分半的方法进行。
这样,前一次分割得到的函数值在分半以后仍然可以被利用,并且易于编程。

运行结果如下:
输入:
0 
3.14159 
输出:Romberg- -12.0703
增加迭代次数或提高精度时,程序运行
得到的结果几乎没有什么变化。可以看到,
和Simpson方法运行的结果基本一致,但
Romberg法速度更快、精度更高


*/

#include "stdafx.h"



#include<iostream>
#include<math.h>
#define epsilon 0.00001
#define COUNT 100
using namespace std;

double fun(double x)
{
	return x*x;
}

double Romberg(double a,double b)
{
	int m ,n;
	double h,x,s,q,ep;
	double p,*R =new double[COUNT];
		
			h=b-a;
			R[0]= h*(fun(a)+ fun(b))/2.0;
			m=1;
			n=1;
			ep=epsilon+1.0;
			while ((ep >= epsilon)&& (m <COUNT))
			{
				p = 0.0;
			{
				for(int i=0;i<n;i++)
				{
					x = a+ (i+0.5)*h ;
					p= p + fun(x);
				}
					p= (R[0]+ h*p)/2.0;
					s = 1.0;
					for(int k=1;k<=m;k++)
					{
						s = 4.0*s;
						q= (s*p-R[k-1])/(s-1.0);
							R[k-1]= p;
							p =q;
					}
					p=fabs(q -R[m-1]);
					m =m + 1;
					R[m-1]= q;
					n = n + n;
					h = h/2.0;
				}
				return (q);
			}
}

int _tmain(int argc, _TCHAR* argv[])
{
	double a,b;
	cout<<"Input a,b:a为下限,b为上限"<<endl;
	cin>>a>>b;
	cout<<"Romberg="<<Romberg(a,b)<<endl;
	system("pause");
	return 0;
}



 

 

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
1月前
|
存储 监控 算法
防止员工泄密软件中文件访问日志管理的 Go 语言 B + 树算法
B+树凭借高效范围查询与稳定插入删除性能,为防止员工泄密软件提供高响应、可追溯的日志管理方案,显著提升海量文件操作日志的存储与检索效率。
81 2
|
1月前
|
C++
基本二叉树与排序二叉树(C++源码)
本程序实现二叉树基本操作与二叉排序树应用。支持前序建树、四种遍历、求深度、叶子数、第K层节点数及查找功能;并实现二叉排序树的构建、中序输出与查找比较次数统计,分析不同插入顺序对树形态和查找效率的影响。
|
6月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
155 2
|
2月前
|
存储 缓存 监控
用 C++ 红黑树给公司电脑监控软件的日志快速排序的方法
本文介绍基于C++红黑树算法实现公司监控电脑软件的日志高效管理,利用其自平衡特性提升日志排序、检索与动态更新效率,并结合实际场景提出优化方向,增强系统性能与稳定性。
117 4
|
1月前
|
存储 运维 监控
局域网网络监控软件的设备连接日志哈希表 C++ 语言算法
针对局域网监控软件日志查询效率低的问题,采用哈希表优化设备连接日志管理。通过IP哈希映射实现O(1)级增删查操作,结合链地址法解决冲突,显著提升500+设备环境下的实时处理性能,内存占用低且易于扩展,有效支撑高并发日志操作。
128 0
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
143 0
|
6月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
180 17
|
5月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
157 0
|
29天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
177 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
136 2

热门文章

最新文章