网络通信系统的voronoi图显示与能耗分析matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。

1.程序功能描述
两层基站(BS)组成整个通讯网络,第 1 层为 Macro 基站记为 ,第 2 层为 Micro 基站记为 ,均服从泊松分布,相互独立,在坐标为 10×10km 的面积内、按照泊松分布随机生成若干个点(随机抛洒两遍 nodes,两层叠加起来)。然后画成 voronoi 图: 也就是在相邻两个点(同种类的点)之间距离的二分之一处画一条线。同时分析网络系统的能耗。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpg
2.jpg
3.jpg

3.核心程序

            %计算每个用户的信号的强度
            for i = 1:Nu
                %针对Macro
                %选择最近的一个基站,计算对应的距离
                for j1 = 1:N1
                    dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                end
                dist1 = min(dist_tmp1);
                P1(i) = Pt1*h*DeltaB1*dist1^(-alpha1);

                %针对Micro
                %选择最近的一个基站,计算对应的距离
                for j2 = 1:N2
                    dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                end
                dist2 = min(dist_tmp2);
                P2(i) = Pt2*h*DeltaB2*dist2^(-alpha2);
                %选择较大的一个联结
                [V,I] = max([P1(i),P2(i)]);
                J(i)  = I; 
            end
            %计算得到的J为每个用户对应选择的基站标号
            J;

            %根据如下规则计算SINR
            %定义与 Macro层BS连接的用户集合
            U1 = find(J==1);
            %定义与 Micro层BS连接的用户集合
            U2 = find(J==2);


            %计算SINR1和RATE1
            %计算SINR2和RATE2
            SINR1   = zeros(1,Nu);
            SINR2   = zeros(1,Nu);
            RATE1   = zeros(1,Nu);
            RATE2   = zeros(1,Nu);
            DeltaT1 = zeros(1,Nu);
            DeltaT2 = zeros(1,Nu);

            for i = 1:Nu
                %计算SINR1和RATE1
                if J(i) == 1
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V1,I1]= min(dist_tmp1);
                   dist1  = V1;
                   FZ     = Pt1*h*dist1^(-alpha1); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   ind1   = 0;
                   tmps   = [];
                   for j1 = 1:N1
                       if (j1 < I1) | (j1 >I1)
                          ind1 = ind1 + 1;
                          tmps(ind1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                       end
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   for j1 = 1:N2
                       tmps(j1) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                   end
                   FM2   = sum(tmps); 
                   SINR1(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE1(i)   = B*log2(1+SINR1(i));
                   DeltaT1(i) = epsl/RATE1(i);
                else
                   SINR1(i)   = 0;
                   RATE1(i)   = 0;
                   DeltaT1(i) = 0; 
                end


                %计算SINR2和RATE2
                if J(i) == 2
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V2,I2]= min(dist_tmp2);
                   dist2  = V2;
                   FZ     = Pt2*DeltaB2*h*dist2^(-alpha2); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps   = [];
                   for j1 = 1:N1
                       tmps(j1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   ind2  = 0;
                   for j1 = 1:N2
                       if (j1 < I2) | (j1 >I2)
                          ind2 = ind2 + 1;
                          tmps(ind2) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                       end
                   end
                   FM2   = sum(tmps); 
                   SINR2(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE2(i)   = B*log2(1+SINR2(i));
                   DeltaT2(i) = epsl/RATE2(i); 
                else
                   SINR2(i)   = 0;
                   RATE2(i)   = 0;
                   DeltaT2(i) = 0; 
                end    
            end

            %计算E
            Pbs1 = zeros(1,Nu);
            Pm1  = zeros(1,Nu);
            Pbs2 = zeros(1,Nu);
            Pm2  = zeros(1,Nu); 
12_011m

4.本算法原理
网络通信系统的Voronoi图显示与能耗分析是一种结合网络通信和图形学的方法,用于研究网络中各个节点之间的连接关系和能量消耗情况。通过Voronoi图,我们可以直观地展示网络中各个节点的可达性和连接关系,同时分析网络的能耗分布和优化方法。

   Voronoi图,也称为泰森多边形,是一种基于点集的分割图形。在这个图中,每个点被表示为一个顶点,每个顶点周围区域内的其他点都距离该点最近。通过Voronoi图,我们可以将一个连续的平面分割为若干个不重叠的区域,使得每个区域都包含一个顶点。

   在网络通信系统中,我们可以将网络中的各个节点作为Voronoi图的顶点,节点之间的连接关系作为边。通过这种方式,我们可以将网络拓扑结构转化为图形结构,从而更直观地展示网络的连接关系。

   Voronoi图的生成主要依赖于计算几何中的一些基本算法。以下是生成Voronoi图的基本步骤:

确定顶点集:在网络通信系统中,顶点集可以由网络中的各个节点构成。
确定距离函数:距离函数用于计算任意两个节点之间的距离。在Voronoi图中,距离函数通常采用欧几里得距离或曼哈顿距离。
计算最小生成树:最小生成树是一种包含所有顶点且边权值最小的树形结构。在网络通信系统中,最小生成树可以用于表示网络中各个节点之间的连接关系。常用的最小生成树算法有Prim算法和Kruskal算法。
生成Voronoi图:根据最小生成树和距离函数,我们可以生成Voronoi图。在生成过程中,对于每个顶点,我们计算其周围区域内的其他顶点距离该点的距离,并将这些顶点连接起来形成边。最终得到的图形就是Voronoi图。
在网络通信系统中,能耗是一个重要的性能指标。能耗分析旨在研究网络中各个节点的能量消耗情况,以便进行优化和节能。在进行能耗分析时,我们可以考虑以下几个方面:

传输能耗:节点在传输数据时需要消耗能量。传输能耗与传输距离、传输速率以及传输功率等因素有关。一般来说,传输距离越远,传输速率越高,传输功率越大,则传输能耗也越大。
接收能耗:节点在接收数据时也需要消耗能量。接收能耗与接收速率、接收功率等因素有关。一般来说,接收速率越高,接收功率越大,则接收能耗也越大。
处理能耗:节点在处理数据时需要消耗能量。处理能耗与处理器的时钟频率、指令执行能耗等因素有关。一般来说,处理器的时钟频率越高,指令执行能耗越大,则处理能耗也越大。
空闲能耗:节点在空闲状态下也需要消耗能量。空闲能耗与节点的待机功耗等因素有关。一般来说,节点的待机功耗越大,则空闲能耗也越大。

相关文章
|
1月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
|
1月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
158 0
|
1月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
1月前
|
传感器 机器学习/深度学习 算法
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
148 0
|
1月前
|
算法 数据挖掘 调度
数据驱动的两阶段分布鲁棒(1-范数和∞-范数约束)的电热综合能源系统研究(Matlab代码实现)
数据驱动的两阶段分布鲁棒(1-范数和∞-范数约束)的电热综合能源系统研究(Matlab代码实现)
106 0
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
190 0
|
1月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
102 0
|
1月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
下一篇
oss云网关配置