网络通信系统的voronoi图显示与能耗分析matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。

1.程序功能描述
两层基站(BS)组成整个通讯网络,第 1 层为 Macro 基站记为 ,第 2 层为 Micro 基站记为 ,均服从泊松分布,相互独立,在坐标为 10×10km 的面积内、按照泊松分布随机生成若干个点(随机抛洒两遍 nodes,两层叠加起来)。然后画成 voronoi 图: 也就是在相邻两个点(同种类的点)之间距离的二分之一处画一条线。同时分析网络系统的能耗。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpg
2.jpg
3.jpg

3.核心程序

            %计算每个用户的信号的强度
            for i = 1:Nu
                %针对Macro
                %选择最近的一个基站,计算对应的距离
                for j1 = 1:N1
                    dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                end
                dist1 = min(dist_tmp1);
                P1(i) = Pt1*h*DeltaB1*dist1^(-alpha1);

                %针对Micro
                %选择最近的一个基站,计算对应的距离
                for j2 = 1:N2
                    dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                end
                dist2 = min(dist_tmp2);
                P2(i) = Pt2*h*DeltaB2*dist2^(-alpha2);
                %选择较大的一个联结
                [V,I] = max([P1(i),P2(i)]);
                J(i)  = I; 
            end
            %计算得到的J为每个用户对应选择的基站标号
            J;

            %根据如下规则计算SINR
            %定义与 Macro层BS连接的用户集合
            U1 = find(J==1);
            %定义与 Micro层BS连接的用户集合
            U2 = find(J==2);


            %计算SINR1和RATE1
            %计算SINR2和RATE2
            SINR1   = zeros(1,Nu);
            SINR2   = zeros(1,Nu);
            RATE1   = zeros(1,Nu);
            RATE2   = zeros(1,Nu);
            DeltaT1 = zeros(1,Nu);
            DeltaT2 = zeros(1,Nu);

            for i = 1:Nu
                %计算SINR1和RATE1
                if J(i) == 1
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V1,I1]= min(dist_tmp1);
                   dist1  = V1;
                   FZ     = Pt1*h*dist1^(-alpha1); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   ind1   = 0;
                   tmps   = [];
                   for j1 = 1:N1
                       if (j1 < I1) | (j1 >I1)
                          ind1 = ind1 + 1;
                          tmps(ind1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                       end
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   for j1 = 1:N2
                       tmps(j1) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                   end
                   FM2   = sum(tmps); 
                   SINR1(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE1(i)   = B*log2(1+SINR1(i));
                   DeltaT1(i) = epsl/RATE1(i);
                else
                   SINR1(i)   = 0;
                   RATE1(i)   = 0;
                   DeltaT1(i) = 0; 
                end


                %计算SINR2和RATE2
                if J(i) == 2
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V2,I2]= min(dist_tmp2);
                   dist2  = V2;
                   FZ     = Pt2*DeltaB2*h*dist2^(-alpha2); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps   = [];
                   for j1 = 1:N1
                       tmps(j1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   ind2  = 0;
                   for j1 = 1:N2
                       if (j1 < I2) | (j1 >I2)
                          ind2 = ind2 + 1;
                          tmps(ind2) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                       end
                   end
                   FM2   = sum(tmps); 
                   SINR2(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE2(i)   = B*log2(1+SINR2(i));
                   DeltaT2(i) = epsl/RATE2(i); 
                else
                   SINR2(i)   = 0;
                   RATE2(i)   = 0;
                   DeltaT2(i) = 0; 
                end    
            end

            %计算E
            Pbs1 = zeros(1,Nu);
            Pm1  = zeros(1,Nu);
            Pbs2 = zeros(1,Nu);
            Pm2  = zeros(1,Nu); 
12_011m

4.本算法原理
网络通信系统的Voronoi图显示与能耗分析是一种结合网络通信和图形学的方法,用于研究网络中各个节点之间的连接关系和能量消耗情况。通过Voronoi图,我们可以直观地展示网络中各个节点的可达性和连接关系,同时分析网络的能耗分布和优化方法。

   Voronoi图,也称为泰森多边形,是一种基于点集的分割图形。在这个图中,每个点被表示为一个顶点,每个顶点周围区域内的其他点都距离该点最近。通过Voronoi图,我们可以将一个连续的平面分割为若干个不重叠的区域,使得每个区域都包含一个顶点。

   在网络通信系统中,我们可以将网络中的各个节点作为Voronoi图的顶点,节点之间的连接关系作为边。通过这种方式,我们可以将网络拓扑结构转化为图形结构,从而更直观地展示网络的连接关系。

   Voronoi图的生成主要依赖于计算几何中的一些基本算法。以下是生成Voronoi图的基本步骤:

确定顶点集:在网络通信系统中,顶点集可以由网络中的各个节点构成。
确定距离函数:距离函数用于计算任意两个节点之间的距离。在Voronoi图中,距离函数通常采用欧几里得距离或曼哈顿距离。
计算最小生成树:最小生成树是一种包含所有顶点且边权值最小的树形结构。在网络通信系统中,最小生成树可以用于表示网络中各个节点之间的连接关系。常用的最小生成树算法有Prim算法和Kruskal算法。
生成Voronoi图:根据最小生成树和距离函数,我们可以生成Voronoi图。在生成过程中,对于每个顶点,我们计算其周围区域内的其他顶点距离该点的距离,并将这些顶点连接起来形成边。最终得到的图形就是Voronoi图。
在网络通信系统中,能耗是一个重要的性能指标。能耗分析旨在研究网络中各个节点的能量消耗情况,以便进行优化和节能。在进行能耗分析时,我们可以考虑以下几个方面:

传输能耗:节点在传输数据时需要消耗能量。传输能耗与传输距离、传输速率以及传输功率等因素有关。一般来说,传输距离越远,传输速率越高,传输功率越大,则传输能耗也越大。
接收能耗:节点在接收数据时也需要消耗能量。接收能耗与接收速率、接收功率等因素有关。一般来说,接收速率越高,接收功率越大,则接收能耗也越大。
处理能耗:节点在处理数据时需要消耗能量。处理能耗与处理器的时钟频率、指令执行能耗等因素有关。一般来说,处理器的时钟频率越高,指令执行能耗越大,则处理能耗也越大。
空闲能耗:节点在空闲状态下也需要消耗能量。空闲能耗与节点的待机功耗等因素有关。一般来说,节点的待机功耗越大,则空闲能耗也越大。

相关文章
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
22天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
28天前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
1月前
|
机器学习/深度学习 算法 5G
基于DNN深度神经网络的OFDM+QPSK信号检测与误码率matlab仿真
本内容展示了基于深度神经网络(DNN)的OFDM-QPSK信号检测算法在Matlab2022a中的仿真效果。通过构建包含多层全连接层和ReLU激活函数的DNN模型,结合信号预处理与特征提取,实现了复杂通信环境下的高效信号检测。仿真结果对比了传统LS、MMSE方法与DNN方法在不同信噪比(SNR)条件下的误码率(BER)和符号错误率(SER),验证了DNN方法的优越性能。核心程序涵盖了QPSK调制、导频插入、OFDM发射、信道传输及DNN预测等关键步骤,为现代通信系统提供了可靠的技术支持。
27 0
|
11月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
435 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
11月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
263 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
11月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
423 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)