网络通信系统的voronoi图显示与能耗分析matlab仿真

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。

1.程序功能描述
两层基站(BS)组成整个通讯网络,第 1 层为 Macro 基站记为 ,第 2 层为 Micro 基站记为 ,均服从泊松分布,相互独立,在坐标为 10×10km 的面积内、按照泊松分布随机生成若干个点(随机抛洒两遍 nodes,两层叠加起来)。然后画成 voronoi 图: 也就是在相邻两个点(同种类的点)之间距离的二分之一处画一条线。同时分析网络系统的能耗。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpg
2.jpg
3.jpg

3.核心程序

            %计算每个用户的信号的强度
            for i = 1:Nu
                %针对Macro
                %选择最近的一个基站,计算对应的距离
                for j1 = 1:N1
                    dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                end
                dist1 = min(dist_tmp1);
                P1(i) = Pt1*h*DeltaB1*dist1^(-alpha1);

                %针对Micro
                %选择最近的一个基站,计算对应的距离
                for j2 = 1:N2
                    dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                end
                dist2 = min(dist_tmp2);
                P2(i) = Pt2*h*DeltaB2*dist2^(-alpha2);
                %选择较大的一个联结
                [V,I] = max([P1(i),P2(i)]);
                J(i)  = I; 
            end
            %计算得到的J为每个用户对应选择的基站标号
            J;

            %根据如下规则计算SINR
            %定义与 Macro层BS连接的用户集合
            U1 = find(J==1);
            %定义与 Micro层BS连接的用户集合
            U2 = find(J==2);


            %计算SINR1和RATE1
            %计算SINR2和RATE2
            SINR1   = zeros(1,Nu);
            SINR2   = zeros(1,Nu);
            RATE1   = zeros(1,Nu);
            RATE2   = zeros(1,Nu);
            DeltaT1 = zeros(1,Nu);
            DeltaT2 = zeros(1,Nu);

            for i = 1:Nu
                %计算SINR1和RATE1
                if J(i) == 1
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V1,I1]= min(dist_tmp1);
                   dist1  = V1;
                   FZ     = Pt1*h*dist1^(-alpha1); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   ind1   = 0;
                   tmps   = [];
                   for j1 = 1:N1
                       if (j1 < I1) | (j1 >I1)
                          ind1 = ind1 + 1;
                          tmps(ind1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                       end
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   for j1 = 1:N2
                       tmps(j1) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                   end
                   FM2   = sum(tmps); 
                   SINR1(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE1(i)   = B*log2(1+SINR1(i));
                   DeltaT1(i) = epsl/RATE1(i);
                else
                   SINR1(i)   = 0;
                   RATE1(i)   = 0;
                   DeltaT1(i) = 0; 
                end


                %计算SINR2和RATE2
                if J(i) == 2
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   for j1 = 1:N1
                       dist_tmp1(j1) = sqrt((xu(i)-x1(j1))^2 + (yu(i)-y1(j1))^2);
                   end
                   for j2 = 1:N2
                       dist_tmp2(j2) = sqrt((xu(i)-x2(j2))^2 + (yu(i)-y2(j2))^2);
                   end       
                   [V2,I2]= min(dist_tmp2);
                   dist2  = V2;
                   FZ     = Pt2*DeltaB2*h*dist2^(-alpha2); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps   = [];
                   for j1 = 1:N1
                       tmps(j1) = Pt1*h*dist_tmp1(j1)^(-alpha1); 
                   end
                   FM1   = sum(tmps); 
                   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                   tmps  = [];
                   ind2  = 0;
                   for j1 = 1:N2
                       if (j1 < I2) | (j1 >I2)
                          ind2 = ind2 + 1;
                          tmps(ind2) = Pt2*h*dist_tmp2(j1)^(-alpha2); 
                       end
                   end
                   FM2   = sum(tmps); 
                   SINR2(i)   = FZ/(FM1+FM2+10^(delta2/20)/1000);
                   RATE2(i)   = B*log2(1+SINR2(i));
                   DeltaT2(i) = epsl/RATE2(i); 
                else
                   SINR2(i)   = 0;
                   RATE2(i)   = 0;
                   DeltaT2(i) = 0; 
                end    
            end

            %计算E
            Pbs1 = zeros(1,Nu);
            Pm1  = zeros(1,Nu);
            Pbs2 = zeros(1,Nu);
            Pm2  = zeros(1,Nu); 
12_011m

4.本算法原理
网络通信系统的Voronoi图显示与能耗分析是一种结合网络通信和图形学的方法,用于研究网络中各个节点之间的连接关系和能量消耗情况。通过Voronoi图,我们可以直观地展示网络中各个节点的可达性和连接关系,同时分析网络的能耗分布和优化方法。

   Voronoi图,也称为泰森多边形,是一种基于点集的分割图形。在这个图中,每个点被表示为一个顶点,每个顶点周围区域内的其他点都距离该点最近。通过Voronoi图,我们可以将一个连续的平面分割为若干个不重叠的区域,使得每个区域都包含一个顶点。

   在网络通信系统中,我们可以将网络中的各个节点作为Voronoi图的顶点,节点之间的连接关系作为边。通过这种方式,我们可以将网络拓扑结构转化为图形结构,从而更直观地展示网络的连接关系。

   Voronoi图的生成主要依赖于计算几何中的一些基本算法。以下是生成Voronoi图的基本步骤:

确定顶点集:在网络通信系统中,顶点集可以由网络中的各个节点构成。
确定距离函数:距离函数用于计算任意两个节点之间的距离。在Voronoi图中,距离函数通常采用欧几里得距离或曼哈顿距离。
计算最小生成树:最小生成树是一种包含所有顶点且边权值最小的树形结构。在网络通信系统中,最小生成树可以用于表示网络中各个节点之间的连接关系。常用的最小生成树算法有Prim算法和Kruskal算法。
生成Voronoi图:根据最小生成树和距离函数,我们可以生成Voronoi图。在生成过程中,对于每个顶点,我们计算其周围区域内的其他顶点距离该点的距离,并将这些顶点连接起来形成边。最终得到的图形就是Voronoi图。
在网络通信系统中,能耗是一个重要的性能指标。能耗分析旨在研究网络中各个节点的能量消耗情况,以便进行优化和节能。在进行能耗分析时,我们可以考虑以下几个方面:

传输能耗:节点在传输数据时需要消耗能量。传输能耗与传输距离、传输速率以及传输功率等因素有关。一般来说,传输距离越远,传输速率越高,传输功率越大,则传输能耗也越大。
接收能耗:节点在接收数据时也需要消耗能量。接收能耗与接收速率、接收功率等因素有关。一般来说,接收速率越高,接收功率越大,则接收能耗也越大。
处理能耗:节点在处理数据时需要消耗能量。处理能耗与处理器的时钟频率、指令执行能耗等因素有关。一般来说,处理器的时钟频率越高,指令执行能耗越大,则处理能耗也越大。
空闲能耗:节点在空闲状态下也需要消耗能量。空闲能耗与节点的待机功耗等因素有关。一般来说,节点的待机功耗越大,则空闲能耗也越大。

相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
7天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)