基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。

1.程序功能描述
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解TSP问题中的应用。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
```while gen <= Iters
gen
%更新
for i=1:Npop
%交叉
Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Pbest(i,2:end-1));
Popd(i) = func_dist(Pops(i,:),Mdist); %计算距离
if Popd(i) < Pdbest(i)
Pbest(i,:) = Pops(i,:);
Pdbest(i) = Popd(i);
end

    %更新Gbest
    [mindis,index] = min(Pdbest); 
    if mindis < Gdbest 
       Gbest  = Pbest(index,:); 
       Gdbest = mindis; 
    end

    %粒子与Gbest交叉
    Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Gbest(2:end-1));
    Popd(i) = func_dist(Pops(i,:),Mdist); 
    if Popd(i) < Pdbest(i) 
        Pbest(i,:) = Pops(i,:); 
        Pdbest(i)  = Popd(i); 
    end

    %粒子变异
    Pops(i,:) = func_Mut(Pops(i,:));
    Popd(i)   = func_dist(Pops(i,:),Mdist); 
    if Popd(i) < Pdbest(i) 
        Pbest(i,:)=Pops(i,:); 
        Pdbest(i)=Popd(i); 
    end

    %更新Gbest
    [mindis,index] = min(Pdbest); %最短距离

    if mindis < Gdbest 
        Gbest = Pbest(index,:); 
        Gdbest = mindis; 
    end
end
%存储此代最短距离
gbest(gen)=Gdbest;
%更新迭代次数
gen=gen+1;

end

p=num2str(Gbest(1)); %配送路径
for i=2:length(Gbest)
p=[p,' -> ',num2str(Gbest(i))];
end
disp(p)
Gdbest

figure
plot(gbest,'LineWidth',2)
xlim([1 gen-1])
xlabel('迭代次数')
ylabel('最优距离(km)')

DrawPath(Gbest,City)
0013

```

4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解TSP问题中的应用,并通过标准的数学公式进行推导和解释。

4.1 TSP问题描述
TSP问题可以描述为:给定一个城市集合和每对城市之间的距离,要求找出访问每个城市一次并返回起点的最短路径。

4.2 遗传算法(Genetic Algorithm, GA)在TSP中的应用
遗传算法是一种模拟自然选择和遗传学机制的优化算法,适用于求解组合优化问题。在TSP问题中,GA通过编码生成初始路径种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。

   编码方式:采用自然数编码,每个城市的编号代表一个基因,一条路径则由一串基因组成。
   初始种群生成:随机生成一定数量的初始路径,构成初始种群。
   适应度函数:以适应度函数来衡量每个个体的优劣。在TSP问题中,适应度函数通常取为路径长度的倒数。
   选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
   交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
    变异操作:通过随机交换路径中两个城市的位置来实现变异。

4.3子群优化算法(Particle Swarm Optimization, PSO)在TSP中的应用
粒子群优化算法是一种模拟鸟群觅食行为的优化算法,适用于连续和离散优化问题。在TSP问题中,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。

   粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中城市的排列顺序决定。
    速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:(v_{id} = w * v_{id} + c1 * rand() * (pbest_{id} - x_{id}) + c2 * rand() * (gbest_d - x_{id})),其中 (v_{id}) 表示第i个粒子在第d维上的速度,(x_{id}) 表示第i个粒子在第d维上的位置,(pbest_{id}) 表示第i个粒子在第d维上的历史最优位置,(gbest_d) 表示群体在第d维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
    位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:(x_{id} = x_{id} + v_{id})。需要注意的是,在更新位置时要保证新生成的路径满足TSP问题的约束条件。

4.4 GA-PSO混合优化算法在TSP中的应用
GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解TSP问题的效率和质量。具体步骤如下:

初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。

相关文章
|
2月前
|
算法 安全 定位技术
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
191 40
|
17天前
|
机器学习/深度学习 传感器 算法
基于GA-HIDMSPSO优化CNN-SVM分类预测的研究(Matlb代码实现)
基于GA-HIDMSPSO优化CNN-SVM分类预测的研究(Matlb代码实现)
|
2月前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
125 8
|
2月前
|
机器学习/深度学习 并行计算 算法
基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)
基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 运维 算法
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
173 4
|
2月前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
155 0
|
2月前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
|
2月前
|
数据采集 人工智能 算法
【有功-无功协调优化】基于改进多目标粒子群优化算法(小生境粒子群算法)的配电网有功-无功协调优化研究(Matlab代码实现)
【有功-无功协调优化】基于改进多目标粒子群优化算法(小生境粒子群算法)的配电网有功-无功协调优化研究(Matlab代码实现)
|
17天前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
|
17天前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)