基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。

1.程序功能描述
基于Dijkstra算法的最优行驶路线搜索matlab仿真,在一个实际城市路线图中,用鼠标点击起点和终点,通过算法完成路线搜索和规划。最后输出规划路线的长度。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg

   通过测试可以看出,Dijkstra算法在实际城市复杂路线搜索中具有一定的应用价值。虽然在一些特殊情况下计算得到的最短路径可能与实际参考路径有所差异,但在大多数情况下,Dijkstra算法能够找到接近最短路径的行驶路线。因此,可以将Dijkstra算法与其他算法和数据来源相结合,以提高最短路径搜索的准确性。

3.核心程序

imshow(beij_map);
title('城市线路图');

waitforbuttonpress;
point  = get(gca,'CurrentPoint');
S1     = round(point(1, 1:2)) + 1;
waitforbuttonpress;
point  = get(gca,'CurrentPoint');
E1     = round(point(1, 1:2)) + 1;

%Dijkstra算法
[Path_search, map_mask,dist] = func_Dijkstra(beij_map, S1, E1);
Path_search(:,3:4)      = 1;

%显示结果
beij_map = func_mapMask(beij_map, map_mask, [0,0,255]);


beij_map = insertShape(beij_map, 'Rectangle', Path_search, 'Color', [255,64,0], 'LineWidth', 2);
beij_map = insertShape(beij_map, 'Rectangle', Path_search(1, :), 'Color', [0,255,0], 'LineWidth', 10);
beij_map = insertShape(beij_map, 'Rectangle', Path_search(end, :), 'Color', [255,0,0], 'LineWidth', 10);
figure;
imshow(beij_map);
title(['路线规划结果,路线长度:',num2str(dist)]);
0001

4.本算法原理
Dijkstra算法是一种经典的图论算法,用于在加权图中查找从起点到终点的最短路径。在实际城市复杂路线搜索中,可以将城市道路网络表示为一个加权图,其中节点代表道路交叉口或地点,边代表道路,边的权重可以代表道路的长度或行驶时间。

   Dijkstra算法的基本原理是从起点开始,依次考虑离起点最近的未被访问过的节点,并更新这些节点的邻居节点的最短路径。具体步骤如下:

初始化:将起点加入已访问节点集合中,将其距离设为0,并将其距离值作为其最短路径值。将其所有邻居节点的距离值设为正无穷大,表示还未找到通往这些节点的最短路径。
选择未访问过的节点中距离起点最近的节点:从未访问过的节点中选择一个距离起点最近的节点,将其加入已访问节点集合中。
更新邻居节点的距离值:对于该节点的所有邻居节点,如果它们的距离值大于起点到该节点的距离值加上边权值,则更新这些邻居节点的距离值。
重复步骤2和3,直到所有节点都被访问过。
Dijkstra算法的数学公式可以用以下方式表示:

初始化:

dist(v) = 0, v为起点节点
dist(u) = ∞, u为其他节点
对于每个未访问过的节点u,选择距离起点最近的节点u:

min_dist = dist(u), u为未访问过的节点
u_nearest = u
重复以下步骤直到所有节点都被访问过:

u_new = u_nearest
for each neighbor v of u_new:
if dist(v) >dist(u_new) + weight(u_new, v):
dist(v) = dist(u_new) + weight(u_new, v)
返回起点到每个节点的最短路径长度:dist(v), v为任意节点。

   为了测试Dijkstra算法在实际城市复杂路线搜索中的应用,我们使用了一个包含城市道路网络的加权图进行测试。其中,节点代表道路交叉口或地点,边代表道路,边的权重可以代表道路的长度或行驶时间。我们使用了起点和终点之间的最短路径作为参考,比较Dijkstra算法计算得到的最短路径与参考路径的差异。以下是测试结果:

在较简单的路线中,Dijkstra算法能够准确地找到最短路径。例如,在一条没有交叉口的直线路段上,Dijkstra算法计算得到的最短路径与参考路径完全一致。
在城市道路网络中,由于道路交叉口和交通状况的复杂性,Dijkstra算法计算得到的最短路径可能与参考路径有所差异。但是,在大多数情况下,Dijkstra算法能够找到接近最短路径的行驶路线。
在一些特殊情况下,例如在城市交通拥堵区域或道路施工区域中行驶时,Dijkstra算法计算得到的最短路径可能与实际参考路径相差较远。这主要是因为Dijkstra算法没有考虑到交通拥堵和道路施工等因素对行驶时间的影响。因此,在实际应用中,需要结合其他算法和数据来源来提高最短路径搜索的准确性。

相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
26 3
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
27天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。