基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。

1.程序功能描述
基于Dijkstra算法的最优行驶路线搜索matlab仿真,在一个实际城市路线图中,用鼠标点击起点和终点,通过算法完成路线搜索和规划。最后输出规划路线的长度。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg

   通过测试可以看出,Dijkstra算法在实际城市复杂路线搜索中具有一定的应用价值。虽然在一些特殊情况下计算得到的最短路径可能与实际参考路径有所差异,但在大多数情况下,Dijkstra算法能够找到接近最短路径的行驶路线。因此,可以将Dijkstra算法与其他算法和数据来源相结合,以提高最短路径搜索的准确性。

3.核心程序

imshow(beij_map);
title('城市线路图');

waitforbuttonpress;
point  = get(gca,'CurrentPoint');
S1     = round(point(1, 1:2)) + 1;
waitforbuttonpress;
point  = get(gca,'CurrentPoint');
E1     = round(point(1, 1:2)) + 1;

%Dijkstra算法
[Path_search, map_mask,dist] = func_Dijkstra(beij_map, S1, E1);
Path_search(:,3:4)      = 1;

%显示结果
beij_map = func_mapMask(beij_map, map_mask, [0,0,255]);


beij_map = insertShape(beij_map, 'Rectangle', Path_search, 'Color', [255,64,0], 'LineWidth', 2);
beij_map = insertShape(beij_map, 'Rectangle', Path_search(1, :), 'Color', [0,255,0], 'LineWidth', 10);
beij_map = insertShape(beij_map, 'Rectangle', Path_search(end, :), 'Color', [255,0,0], 'LineWidth', 10);
figure;
imshow(beij_map);
title(['路线规划结果,路线长度:',num2str(dist)]);
0001

4.本算法原理
Dijkstra算法是一种经典的图论算法,用于在加权图中查找从起点到终点的最短路径。在实际城市复杂路线搜索中,可以将城市道路网络表示为一个加权图,其中节点代表道路交叉口或地点,边代表道路,边的权重可以代表道路的长度或行驶时间。

   Dijkstra算法的基本原理是从起点开始,依次考虑离起点最近的未被访问过的节点,并更新这些节点的邻居节点的最短路径。具体步骤如下:

初始化:将起点加入已访问节点集合中,将其距离设为0,并将其距离值作为其最短路径值。将其所有邻居节点的距离值设为正无穷大,表示还未找到通往这些节点的最短路径。
选择未访问过的节点中距离起点最近的节点:从未访问过的节点中选择一个距离起点最近的节点,将其加入已访问节点集合中。
更新邻居节点的距离值:对于该节点的所有邻居节点,如果它们的距离值大于起点到该节点的距离值加上边权值,则更新这些邻居节点的距离值。
重复步骤2和3,直到所有节点都被访问过。
Dijkstra算法的数学公式可以用以下方式表示:

初始化:

dist(v) = 0, v为起点节点
dist(u) = ∞, u为其他节点
对于每个未访问过的节点u,选择距离起点最近的节点u:

min_dist = dist(u), u为未访问过的节点
u_nearest = u
重复以下步骤直到所有节点都被访问过:

u_new = u_nearest
for each neighbor v of u_new:
if dist(v) >dist(u_new) + weight(u_new, v):
dist(v) = dist(u_new) + weight(u_new, v)
返回起点到每个节点的最短路径长度:dist(v), v为任意节点。

   为了测试Dijkstra算法在实际城市复杂路线搜索中的应用,我们使用了一个包含城市道路网络的加权图进行测试。其中,节点代表道路交叉口或地点,边代表道路,边的权重可以代表道路的长度或行驶时间。我们使用了起点和终点之间的最短路径作为参考,比较Dijkstra算法计算得到的最短路径与参考路径的差异。以下是测试结果:

在较简单的路线中,Dijkstra算法能够准确地找到最短路径。例如,在一条没有交叉口的直线路段上,Dijkstra算法计算得到的最短路径与参考路径完全一致。
在城市道路网络中,由于道路交叉口和交通状况的复杂性,Dijkstra算法计算得到的最短路径可能与参考路径有所差异。但是,在大多数情况下,Dijkstra算法能够找到接近最短路径的行驶路线。
在一些特殊情况下,例如在城市交通拥堵区域或道路施工区域中行驶时,Dijkstra算法计算得到的最短路径可能与实际参考路径相差较远。这主要是因为Dijkstra算法没有考虑到交通拥堵和道路施工等因素对行驶时间的影响。因此,在实际应用中,需要结合其他算法和数据来源来提高最短路径搜索的准确性。

相关文章
|
2月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
188 5
|
2月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
152 0
|
5月前
|
存储 运维 监控
基于 C# 语言的 Dijkstra 算法在局域网内监控软件件中的优化与实现研究
本文针对局域网监控系统中传统Dijkstra算法的性能瓶颈,提出了一种基于优先队列和邻接表优化的改进方案。通过重构数据结构与计算流程,将时间复杂度从O(V²)降至O((V+E)logV),显著提升大规模网络环境下的计算效率与资源利用率。实验表明,优化后算法在包含1000节点、5000链路的网络中,计算时间缩短37.2%,内存占用减少21.5%。该算法适用于网络拓扑发现、异常流量检测、故障定位及负载均衡优化等场景,为智能化局域网监控提供了有效支持。
144 5
|
7月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
207 24
|
2月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
316 4
|
2月前
|
存储 算法 数据可视化
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
本程序基于禁忌搜索算法解决旅行商问题(TSP),旨在寻找访问多个城市的最短路径。使用 MATLAB 2022A 编写,包含城市坐标生成、路径优化及结果可视化功能。通过禁忌列表、禁忌长度与藐视准则等机制,提升搜索效率与解的质量,适用于物流配送、路径规划等场景。
|
3月前
|
算法 机器人 定位技术
基于机器视觉和Dijkstra算法的平面建筑群地图路线规划matlab仿真
本程序基于机器视觉与Dijkstra算法,实现平面建筑群地图的路径规划。通过MATLAB 2022A读取地图图像,识别障碍物并进行路径搜索,支持鼠标选择起点与终点,最终显示最优路径及长度,适用于智能导航与机器人路径规划场景。
|
4月前
|
机器学习/深度学习 存储 算法
强化学习算法基准测试:6种算法在多智能体环境中的表现实测
本文系统研究了多智能体强化学习的算法性能与评估框架,选用井字棋和连珠四子作为基准环境,对比分析Q-learning、蒙特卡洛、Sarsa等表格方法在对抗场景中的表现。实验表明,表格方法在小规模状态空间(如井字棋)中可有效学习策略,但在大规模状态空间(如连珠四子)中因泛化能力不足而失效,揭示了向函数逼近技术演进的必要性。研究构建了标准化评估流程,明确了不同算法的适用边界,为理解强化学习的可扩展性问题提供了实证支持与理论参考。
238 0
强化学习算法基准测试:6种算法在多智能体环境中的表现实测
|
5月前
|
自然语言处理 算法 数据可视化
文本聚类效果差?5种主流算法性能测试帮你找到最佳方案
本文探讨了自然语言处理中句子嵌入的聚类技术,使用Billingsmoore数据集(925个英语句子)进行实验。通过生成句子嵌入向量并可视化分析,对比了K-Means、DBSCAN、HDBSCAN、凝聚型层次聚类和谱聚类等算法的表现。结果表明,K-Means适合已知聚类数量的场景,DBSCAN和HDBSCAN适用于未知聚类数量且存在异常值的情况,而谱聚类在句子嵌入领域表现不佳。最终建议根据数据特征和计算资源选择合适的算法以实现高质量聚类。
299 0
文本聚类效果差?5种主流算法性能测试帮你找到最佳方案
|
5月前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
237 0