✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
多目标优化问题是现实世界中许多复杂问题的一种常见形式。在这些问题中,我们需要优化多个目标函数,而不是单个目标。然而,由于目标函数之间的相互依赖关系和冲突,传统的单目标优化算法无法直接应用于多目标优化问题。因此,研究人员开发了许多针对多目标优化问题的算法和技术。
ev-MOGA(evolutionary Multi-Objective Optimization Algorithm)是一种基于进化算法的多目标优化算法。它通过模拟自然界中的进化过程,逐步搜索解空间中的非劣解集合,以帮助决策者在多个目标之间进行权衡和选择。ev-MOGA算法的核心思想是通过维护一个种群,通过遗传操作(如交叉和变异)产生新的解,并通过多目标评估函数对这些解进行评估和排序。
ev-MOGA算法的一个重要特点是它能够生成并维护一组非劣解,而不仅仅是一个最优解。这使得决策者能够在不同的目标之间进行权衡,并选择最适合他们需求的解。为了实现这一点,ev-MOGA算法使用了一种称为“非劣排序”的技术,将种群中的解按照其在目标空间中的优劣程度进行排序。通过保留非劣解的精英集合,并通过交叉和变异操作引入新的解,ev-MOGA算法能够逐步逼近真实的Pareto前沿(即所有非劣解的集合)。
ev-MOGA算法的另一个重要特点是它的多样性维持能力。为了避免算法陷入局部最优解,ev-MOGA算法使用了一种称为“拥挤度距离”的技术。拥挤度距离用于衡量解在目标空间中的分布情况,通过鼓励解在整个Pareto前沿上均匀分布,以增加搜索空间的探索性。这种多样性维持能力使得ev-MOGA算法能够在解空间中找到更多的潜在解,并为决策者提供更多的选择。
然而,尽管ev-MOGA算法在多目标优化问题上取得了很大的成功,但它也面临着一些挑战和限制。首先,ev-MOGA算法对问题的可行解空间的表示形式有一定的要求。如果问题的可行解空间具有复杂的拓扑结构或非连续性,ev-MOGA算法可能无法很好地搜索解空间。其次,ev-MOGA算法对目标函数的可导性要求较高。如果目标函数不可导或难以计算,ev-MOGA算法可能无法准确评估解的优劣。最后,ev-MOGA算法的计算复杂度较高,特别是在解空间较大或目标函数较复杂的情况下,算法的运行时间可能会很长。
总的来说,ev-MOGA是一种有效的多目标优化算法,可以帮助决策者在多个目标之间进行权衡和选择。然而,在使用ev-MOGA算法求解多目标优化问题时,我们需要考虑问题的可行解空间表示形式、目标函数的可导性以及算法的计算复杂度等因素。通过充分理解和应用ev-MOGA算法的原理和技术,我们可以更好地解决多目标优化问题,并为决策者提供更好的解决方案。
⛄ 核心代码
%% evMOGA example 1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Minimal algorithm parameters set (problem characteristics)clear eMOGAeMOGA.objfun='mop3'; % m-function name for objectives computationeMOGA.objfun_dim=2; % Objective space dimensioneMOGA.searchspaceUB=[pi pi]; % Search space upper boundeMOGA.searchspaceLB=[-pi -pi]; % Search space lower bound%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Algorithm execution[pfront,pset,eMOGA]=evMOGA(eMOGA);
⛄ 运行结果
⛄ 参考文献
[1] M. Martínez, J.M. Herrero, J. Sanchis, X. Blasco and S. García-Nieto. Applied Pareto multi-objective optimization by stochastic solvers. Engineering Applications of Artificial Intelligence. Vol. 22 pp. 455 - 465, 2009 (ISSN:0952-1976).
[2] J.M. Herrero, M. Martínez, J. Sanchis and X. Blasco. Well-Distributed Pareto Front by Using the epsilon-MOGA Evolutionary Algorithm. Lecture Notes in Computer Science, 4507, pp. 292-299, 2007. Springer-Verlag. (ISSN: 0302-9743)
ev-MOGA has been used in:
[3] J.M. Herrero, X. Blasco, M. Martínez, C. Ramos and J. Sanchis. Robust Identification of a Greenhouse Model using Multi-objective Evolutionary Algorithms. Biosystems Engineering. Vol. 98, Num. 3, pp. 335 - 346, Nov 2007. (ISSN 1537-5110)
[4] J.M. Herrero, X. Blasco , M. Martínez, J. Sanchis. Multiobjective Tuning of Robust PID Controllers Using Evolutionary Algorithms. Lecture Notes in Computer Science, 4974, pp. 515 - 524, 2008. Springer-Verlag. (ISSN: 0302-9743)
[5] J. M. Herrero, S. García-Nieto, X. Blasco, V. Romero-García, J. V. Sánchez-Pérez and L. M. Garcia-Raffi. Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization. Vol. 39, num. 2, pp. 203 - 215, 2009 (ISSN:1615-1488).
[6] G. Reynoso, X. Blasco, J. Sanchis. Diseño Multiobjetivo de controladores PID para el Benchmark de Control 2008-2009. Revista Iberoamericana de Automática e Informática Industrial. Vol. 6, Num. 4, pp. 93 - 103 , 2009. (ISSN: 1697-7912)
[7] E. Afzalan, M. Joorabian. Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable.