RUN-XGBOOST回归预测 | Matlab 龙格库塔优化xgboost回归预测

简介: RUN-XGBOOST回归预测 | Matlab 龙格库塔优化xgboost回归预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习和数据科学领域,回归预测是一项重要的任务。通过建立数学模型,我们可以根据已有的数据来预测未知数据的结果。XGBoost是一种流行的机器学习算法,它在回归预测中表现出色。本文将介绍如何使用龙格库塔算法RUN来优化XGBoost,以实现更精确的数据回归预测。

首先,让我们了解一下XGBoost和龙格库塔算法RUN的基本概念。

XGBoost是一种基于梯度提升树的机器学习算法。它通过迭代地训练多个弱学习器,然后将它们组合成一个强学习器。XGBoost在处理结构化数据和特征工程方面非常强大,因此在回归预测任务中广泛应用。

龙格库塔算法RUN是一种数值方法,用于求解常微分方程。它通过迭代的方式逼近微分方程的解,可以提供更精确的数值结果。RUN算法在数值计算领域被广泛使用,特别适用于需要高精度和稳定性的问题。

现在,让我们看看如何将RUN算法与XGBoost相结合,以实现更准确的回归预测。

首先,我们需要准备数据集。选择一个适当的数据集对于回归预测至关重要。确保数据集具有足够的样本数量和多样性,以便训练出鲁棒性强的模型。

接下来,我们需要进行特征工程。这包括数据清洗、特征选择和特征转换等步骤。确保数据集中没有缺失值或异常值,并选择最相关的特征进行建模。

然后,我们可以开始使用XGBoost进行回归预测。XGBoost提供了丰富的参数选项,可以根据数据集的特点进行调整。通过交叉验证和网格搜索等技术,我们可以找到最佳的参数组合,以提高模型的性能。

现在,让我们介绍如何使用龙格库塔算法RUN来优化XGBoost。首先,我们需要将RUN算法应用于XGBoost模型的训练过程。通过迭代地求解微分方程,我们可以获得更准确的模型参数。这将有助于提高模型的预测能力。

另外,我们还可以使用RUN算法来优化XGBoost模型的超参数。通过调整学习率、树的数量和深度等参数,我们可以找到最佳的模型配置。这将进一步提高模型的性能和稳定性。

最后,我们需要评估模型的性能。使用合适的评估指标,如均方误差(MSE)或决定系数(R-squared),来衡量模型的预测准确度。通过与其他算法进行比较,我们可以评估XGBoost在回归预测任务中的表现。

综上所述,通过将龙格库塔算法RUN与XGBoost相结合,我们可以实现更准确和稳定的数据回归预测。这种方法在实际应用中具有广泛的潜力,可以帮助我们解决复杂的回归问题。希望本文对您理解和应用XGBoost回归预测有所帮助。谢谢阅读!

📣 部分代码

function R2 = rsquare(y,yhat)% PURPOSE:  calculate r square using data y and estimates yhat% -------------------------------------------------------------------% USAGE: R2 = rsquare(y,yhat)% where: %        y are the original values as vector or 2D matrix and%        yhat are the estimates calculated from y using a regression, given in%        the same form (vector or raster) as y% -------------------------------------------------------------------------% OUTPUTS:%        R2 is the r square value calculated using 1-SS_E/SS_T% -------------------------------------------------------------------% Note: NaNs in either y or yhat are deleted from both sets.%% Felix Hebeler, Geography Dept., University Zurich, Feb 2007if nargin ~= 2    error('This function needs some exactly 2 input arguments!');end% reshape if 2d matrixyhat=reshape(yhat,1,size(yhat,1)*size(yhat,2)); y=reshape(y,1,size(y,1)*size(y,2));% delete NaNswhile sum(isnan(y))~=0 || sum(isnan(yhat))~=0    if sum(isnan(y)) >= sum(isnan(yhat))         yhat(isnan(y))=[];        y(isnan(y))=[];    else        y(isnan(yhat))=[];         yhat(isnan(yhat))=[];    endend% 1 - SSe/SStR2 = 1 - ( sum( (y-yhat).^2 ) / sum( (y-mean(y)).^2 ) );% SSr/SSt% R2 = sum((yhat-mean(y)).^2) / sum( (y-mean(y)).^2 ) ;if R2<0 || R2>1    error(['R^2 of ',num2str(R2),' : yhat does not appear to be the estimate of y from a regression.'])end

⛳️ 运行结果

image.gif编辑

image.gif编辑

image.gif编辑

🔗 参考文献

[1]  Pathania A , Kumar P ,Priyanka,et al.Development of an Ensemble Gradient Boosting Algorithm for Generating Alerts About Impending Soil Movements[J].  2021.DOI:10.1007/978-981-16-0289-4-28.

[2] Dr G.V.S.N.R.V. Prasad, Nakka R .Runtime Based Recommendations on Netflix Data using SBE-XGBoost model[J].Solid State Technology, 2020, 63(4):2304-2321.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合
相关文章
|
11天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
2天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
11天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
9天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
7天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
19天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
16天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
13天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
13天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。

热门文章

最新文章