融合自适应惯性权重和柯西变异的秃鹰搜索算法(CBES) 附matlab代码

简介: 融合自适应惯性权重和柯西变异的秃鹰搜索算法(CBES) 附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在最近的研究中,一种名为秃鹰搜索算法(Cuckoo Search Algorithm)的优化算法已经引起了广泛的关注。这种算法受到了自然界中秃鹰的繁殖行为的启发,通过模拟秃鹰寻找巢穴和替换其他鸟类鸟蛋的行为,来搜索最优解。

然而,传统的秃鹰搜索算法在解决复杂问题时可能会遇到一些困难。为了克服这些问题,研究人员提出了一种改进的算法,即融合自适应惯性权重和柯西变异的秃鹰搜索算法(CBES)。

这种改进的算法引入了自适应惯性权重和柯西变异两个重要的概念。自适应惯性权重可以使算法在搜索过程中具有更好的全局搜索能力和局部搜索能力。柯西变异则可以增加算法的多样性,从而更好地避免陷入局部最优解。

CBES算法的基本步骤与传统的秃鹰搜索算法类似。首先,生成一组初始解作为种群。然后,根据适应度函数对种群进行评估,并根据柯西变异和自适应惯性权重来更新解的位置。最后,通过迭代多次来寻找最优解。

通过在不同的测试函数上进行实验,研究人员发现CBES算法相比于传统的秃鹰搜索算法具有更好的搜索性能和收敛性能。这表明CBES算法在解决复杂问题时具有更大的潜力。

总之,融合自适应惯性权重和柯西变异的秃鹰搜索算法(CBES)是一种有效的优化算法,可以用于解决各种复杂问题。通过引入自适应惯性权重和柯西变异的概念,CBES算法能够更好地平衡全局搜索和局部搜索能力,从而提高搜索性能。我们期待未来进一步的研究和应用,以探索CBES算法在实际问题中的潜力。

⛄ 部分代码

%################################################################################################%% Designed and Developed by Dr. Gaurav Dhiman (http://dhimangaurav.com/)                         %% Doi: https://doi.org/10.1016/j.engappai.2019.03.021                                            %% Link: https://www.sciencedirect.com/science/article/abs/pii/S0952197619300715                  %% Title: STOA: A bio-inspired based optimization algorithm for industrial engineering problems   %% Authors: Gaurav Dhiman and Amandeep Kaur                                                       %%################################################################################################%function [lowerbound,upperbound,dimension,fitness] = fun_info(F)switch F    case 'F1'        fitness = @F1;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F2'        fitness = @F2;        lowerbound=-10;        upperbound=10;        dimension=30;            case 'F3'        fitness = @F3;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F4'        fitness = @F4;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F5'        fitness = @F5;        lowerbound=-30;        upperbound=30;        dimension=30;            case 'F6'        fitness = @F6;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F7'        fitness = @F7;        lowerbound=-1.28;        upperbound=1.28;        dimension=30;            case 'F8'        fitness = @F8;        lowerbound=-500;        upperbound=500;        dimension=30;            case 'F9'        fitness = @F9;        lowerbound=-5.12;        upperbound=5.12;        dimension=30;            case 'F10'        fitness = @F10;        lowerbound=-32;        upperbound=32;        dimension=30;            case 'F11'        fitness = @F11;        lowerbound=-600;        upperbound=600;        dimension=30;            case 'F12'        fitness = @F12;        lowerbound=-50;        upperbound=50;        dimension=30;            case 'F13'        fitness = @F13;        lowerbound=-50;        upperbound=50;        dimension=30;            case 'F14'        fitness = @F14;        lowerbound=-65.536;        upperbound=65.536;        dimension=2;            case 'F15'        fitness = @F15;        lowerbound=-5;        upperbound=5;        dimension=4;            case 'F16'        fitness = @F16;        lowerbound=-5;        upperbound=5;        dimension=2;            case 'F17'        fitness = @F17;        lowerbound=[-5,0];        upperbound=[10,15];        dimension=2;            case 'F18'        fitness = @F18;        lowerbound=-2;        upperbound=2;        dimension=2;            case 'F19'        fitness = @F19;        lowerbound=0;        upperbound=1;        dimension=3;            case 'F20'        fitness = @F20;        lowerbound=0;        upperbound=1;        dimension=6;                 case 'F21'        fitness = @F21;        lowerbound=0;        upperbound=10;        dimension=4;                case 'F22'        fitness = @F22;        lowerbound=0;        upperbound=10;        dimension=4;                case 'F23'        fitness = @F23;        lowerbound=0;        upperbound=10;        dimension=4;            endend% F1function R = F1(x)R=sum(x.^2);end% F2function R = F2(x)R=sum(abs(x))+prod(abs(x));end% F3function R = F3(x)dimension=size(x,2);R=0;for i=1:dimension    R=R+sum(x(1:i))^2;endend% F4function R = F4(x)R=max(abs(x));end% F5function R = F5(x)dimension=size(x,2);R=sum(100*(x(2:dimension)-(x(1:dimension-1).^2)).^2+(x(1:dimension-1)-1).^2);end% F6function R = F6(x)R=sum(abs((x+.5)).^2);end% F7function R = F7(x)dimension=size(x,2);R=sum([1:dimension].*(x.^4))+rand;end% F8function R = F8(x)R=sum(-x.*sin(sqrt(abs(x))));end% F9function R = F9(x)dimension=size(x,2);R=sum(x.^2-10*cos(2*pi.*x))+10*dimension;end% F10function R = F10(x)dimension=size(x,2);R=-20*exp(-.2*sqrt(sum(x.^2)/dimension))-exp(sum(cos(2*pi.*x))/dimension)+20+exp(1);end% F11function R = F11(x)dimension=size(x,2);R=sum(x.^2)/4000-prod(cos(x./sqrt([1:dimension])))+1;end% F12function R = F12(x)dimension=size(x,2);R=(pi/dimension)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dimension-1)+1)./4).^2).*...(1+10.*((sin(pi.*(1+(x(2:dimension)+1)./4)))).^2))+((x(dimension)+1)/4)^2)+sum(Ufun(x,10,100,4));end% F13function R = F13(x)dimension=size(x,2);R=.1*((sin(3*pi*x(1)))^2+sum((x(1:dimension-1)-1).^2.*(1+(sin(3.*pi.*x(2:dimension))).^2))+...((x(dimension)-1)^2)*(1+(sin(2*pi*x(dimension)))^2))+sum(Ufun(x,5,100,4));end% F14function R = F14(x)aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];for j=1:25    bS(j)=sum((x'-aS(:,j)).^6);endR=(1/500+sum(1./([1:25]+bS))).^(-1);end% F15function R = F15(x)aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;R=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);end% F16function R = F16(x)R=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);end% F17function R = F17(x)R=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;end% F18function R = F18(x)R=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));end% F19function R = F19(x)aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];R=0;for i=1:4    R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F20function R = F20(x)aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];cH=[1 1.2 3 3.2];pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;....2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];R=0;for i=1:4    R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F21function R = F21(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:5    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F22function R = F22(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:7    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F23function R = F23(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:10    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endendfunction R=Ufun(x,a,k,m)R=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));end

⛄ 运行结果image.gif编辑

image.gif编辑

 

⛄ 参考文献

[1]丁容,高建瓴,张倩.融合自适应惯性权重和柯西变异的秃鹰搜索算法[J].小型微型计算机系统, 2023, 44(5):910-915.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


目录
打赏
0
0
0
0
853
分享
相关文章
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等