基于GWO灰狼优化的CNN-GRU-Attention的时间序列回归预测matlab仿真

简介: 摘要:该文介绍了使用 MATLAB 2022a 进行时间序列预测的算法优化。优化前后对比显示效果改善明显。算法基于CNN、GRU和注意力机制的深度学习模型,其中GWO(灰狼优化)用于优化超参数。CNN提取时间序列的局部特征,GRU处理序列数据的长期依赖,注意力机制聚焦关键信息。GWO算法模拟灰狼行为以实现全局优化。提供的代码片段展示了网络训练和预测过程,以及预测值与真实值的比较。

1.算法运行效果图预览
优化前

1.jpeg
2.jpeg

优化后

3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、GRU以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

3.1卷积神经网络(CNN)在时间序列中的应用
在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

image.png

   CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

3.2 GRU网络
GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。

   GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt并更新隐藏状态ht。其核心创新在于引入了两个门控机制:更新门(Update Gate)和重置门(Reset Gate)。

image.png
image.png

3.3 注意力机制(Attention)
注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。

3.4 GWO优化
灰狼优化(Grey Wolf Optimizer, GWO)是一种受到灰狼社群行为启发的全球优化算法,由Seyedali Mirjalili等于2014年提出。它模仿了灰狼在自然界中的领导层次结构、狩猎策略以及社会共存机制,以解决各种复杂的优化问题。与遗传算法类似,GWO也是基于种群的优化技术,但其独特的搜索策略和更新规则使其在处理某些类型的问题时展现出不同的优势。

    在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近.

4.部分核心程序
``` r1 = rand;
r2 = rand;
A3 = 2ar1-a; %
C3 = 2r2; %
D_delta = abs(C3
dltx(j)-xpos(i,j)); %
X3 = dltx(j)-A3*D_delta; %

        xpos(i,j) = (X1+X2+X3)/3;%

        if xpos(i,j)>=Lmax(j)
           xpos(i,j)=Lmax(j);
        end
        if xpos(i,j)<=Lmin(j)
           xpos(i,j)=Lmin(j);
        end

    end
end

end

LR = Alpx(1)
numHiddenUnits = floor(Alpx(2))+1

....................................................
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);

%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1Vmax2;
T_sim2=Dpre2
Vmax2;

%网络结构
analyzeNetwork(Net)

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on
subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);

save R2.mat Num2 Tat_test T_sim2

```

相关文章
|
5月前
|
机器学习/深度学习 数据采集 算法
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
310 0
|
3月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
176 0
|
4月前
|
机器学习/深度学习 数据采集 并行计算
基于DTW(动态弯曲距离)-Kmeans的时间序列聚类分析模型(Matlab代码实现)
基于DTW(动态弯曲距离)-Kmeans的时间序列聚类分析模型(Matlab代码实现)
429 1
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的XGBoost时间序列预测算法matlab仿真
本程序基于Matlab 2024b实现,结合粒子群优化(PSO)与XGBoost算法,用于时间序列预测。通过PSO优化XGBoost超参数,提升预测精度。程序包含完整注释与操作视频,运行后生成预测效果图及性能评估指标RMSE。
|
4月前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
224 0
|
7月前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
349 0
|
3月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
165 0
|
3月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
134 0

热门文章

最新文章