基于CBAM-CNN卷积神经网络预测研究(Python代码实现)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 基于CBAM-CNN卷积神经网络预测研究(Python代码实现)

💥1 概述

CBAM(CBAM-CNN)是一种用于计算机视觉领域的卷积神经网络结构,它能够有效地从图像中学习关注和调整。CBAM模型结合了通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module)两个部分,用于提升卷积神经网络的性能。


通道注意力模块(CAM)旨在通过学习不同通道之间的相关性,为每个通道分配适当的注意力权重。该模块首先通过全局平均池化获得整个通道的平均值,然后使用两个全连接层来生成一组注意力权重。这些权重用于调整每个通道的特征图。


空间注意力模块(SAM)旨在学习图像中不同空间区域的重要性。该模块通过对特征图在不同空间维度上进行最大池化和平均池化操作,然后使用一个卷积层来生成一组注意力权重。最后,这些权重被应用于原始特征图,以增强具有重要空间信息的区域。


通过结合通道注意力模块和空间注意力模块,CBAM能够动态地选择和调整特征图的通道和空间注意力,从而提取更准确和具有区分力的特征表示。这种注意力机制有助于网络更好地对图像进行感知,从而改善图像分类、目标检测、图像分割等计算机视觉任务的性能。


针对预测任务,可以使用CBAM-CNN模型进行图像分类或目标检测。在图像分类任务中,CBAM-CNN可以通过自适应地关注重要的通道和空间区域,提取图像特征并进行分类。在目标检测任务中,CBAM-CNN可以辅助检测网络对目标区域进行准确定位和分类。


需要注意的是,CBAM-CNN只是一种网络结构,具体的预测研究还需要根据具体的任务和数据集进行调整和优化。


📚2 运行结果


部分代码:

def forward(self, x):
        # 1.最大池化分支
        max_branch = self.MaxPool(x)
        # 送入MLP全连接神经网络, 得到权重
        max_in = max_branch.view(max_branch.size(0), -1)
        max_weight = self.fc_MaxPool(max_in)
        # 2.全局池化分支
        avg_branch = self.AvgPool(x)
        # 送入MLP全连接神经网络, 得到权重
        avg_in = avg_branch.view(avg_branch.size(0), -1)
        avg_weight = self.fc_AvgPool(avg_in)
        # MaxPool + AvgPool 激活后得到权重weight
        weight = max_weight + avg_weight
        weight = self.sigmoid(weight)
        # 将维度为b, c的weight, reshape成b, c, 1, 1 与 输入x 相乘
        h, w = weight.shape
        # 通道注意力Mc
        Mc = torch.reshape(weight, (h, w, 1))
        # 乘积获得结果
        x = Mc * x
        return x
class SpatialAttentionModul(nn.Module):  # 空间注意力模块
    def __init__(self, in_channel):
        super(SpatialAttentionModul, self).__init__()
        self.conv = nn.Conv1d(2, 1, 7, padding=3)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        # x维度为 [N, C, H, W] 沿着维度C进行操作, 所以dim=1, 结果为[N, H, W]
        MaxPool = torch.max(x, dim=1).values  # torch.max 返回的是索引和value, 要用.values去访问值才行!
        AvgPool = torch.mean(x, dim=1)
        # 增加维度, 变成 [N, 1, H, W]
        MaxPool = torch.unsqueeze(MaxPool, dim=1)
        AvgPool = torch.unsqueeze(AvgPool, dim=1)
        # 维度拼接 [N, 2, H, W]
        x_cat = torch.cat((MaxPool, AvgPool), dim=1)  # 获得特征图
        # 卷积操作得到空间注意力结果
        x_out = self.conv(x_cat)
        Ms = self.sigmoid(x_out)
        # 与原图通道进行乘积
        x = Ms * x
        return x
if __name__ == '__main__':
    inputs = torch.randn(32, 512, 16)
    model = CBAM(in_channel=512)  # CBAM模块, 可以插入CNN及任意网络中, 输入特征图in_channel的维度


    def forward(self, x):
        # 1.最大池化分支
        max_branch = self.MaxPool(x)
        # 送入MLP全连接神经网络, 得到权重
        max_in = max_branch.view(max_branch.size(0), -1)
        max_weight = self.fc_MaxPool(max_in)
        # 2.全局池化分支
        avg_branch = self.AvgPool(x)
        # 送入MLP全连接神经网络, 得到权重
        avg_in = avg_branch.view(avg_branch.size(0), -1)
        avg_weight = self.fc_AvgPool(avg_in)
        # MaxPool + AvgPool 激活后得到权重weight
        weight = max_weight + avg_weight
        weight = self.sigmoid(weight)
        # 将维度为b, c的weight, reshape成b, c, 1, 1 与 输入x 相乘
        h, w = weight.shape
        # 通道注意力Mc
        Mc = torch.reshape(weight, (h, w, 1))
        # 乘积获得结果
        x = Mc * x
        return x
class SpatialAttentionModul(nn.Module):  # 空间注意力模块
    def __init__(self, in_channel):
        super(SpatialAttentionModul, self).__init__()
        self.conv = nn.Conv1d(2, 1, 7, padding=3)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        # x维度为 [N, C, H, W] 沿着维度C进行操作, 所以dim=1, 结果为[N, H, W]
        MaxPool = torch.max(x, dim=1).values  # torch.max 返回的是索引和value, 要用.values去访问值才行!
        AvgPool = torch.mean(x, dim=1)
        # 增加维度, 变成 [N, 1, H, W]
        MaxPool = torch.unsqueeze(MaxPool, dim=1)
        AvgPool = torch.unsqueeze(AvgPool, dim=1)
        # 维度拼接 [N, 2, H, W]
        x_cat = torch.cat((MaxPool, AvgPool), dim=1)  # 获得特征图
        # 卷积操作得到空间注意力结果
        x_out = self.conv(x_cat)
        Ms = self.sigmoid(x_out)
        # 与原图通道进行乘积
        x = Ms * x
        return x
if __name__ == '__main__':
    inputs = torch.randn(32, 512, 16)
    model = CBAM(in_channel=512)  # CBAM模块, 可以插入CNN及任意网络中, 输入特征图in_channel的维度

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]黄昌顺,张金萍.基于CBAM-CNN的滚动轴承故障诊断方法[J].现代制造工程,2022(11):137-143.DOI:10.16731/j.cnki.1671-3133.2022.11.022.


[2]杜先君,巩彬,余萍等.基于CBAM-CNN的模拟电路故障诊断[J].控制与决策,2022,37(10):2609-2618.DOI:10.13195/j.kzyjc.2021.1111.


🌈4 Python代码及数据

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
217 55
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
86 3
图卷积网络入门:数学基础与架构设计
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
58 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。

热门文章

最新文章