领先AI企业经验谈:探究AI分布式推理网络架构实践

本文涉及的产品
全球加速 GA,每月750个小时 15CU
传统型负载均衡 CLB,每月750个小时 15LCU
公网NAT网关,每月750个小时 15CU
简介: 当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。

当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。



引言:AI浪潮下的挑战


在这场AI技术革命中,技术创新与应用落地齐头并进,对算力和数据的需求呈爆发式增长。同时,AI推理任务的复杂性和规模也在不断增长,单一计算节点难以满足实时、高效的推理需求。因此,分布式AI推理架构成为企业的主要技术方案。

然而,在实际落地AI应用时,常常会遭遇种种挑战,尤其是在多云环境下算力/推理调度方面。



在AI推理项目中,数据往往分布在多个云平台之间,跨云调用时,网络延迟带来的影响难以忽视,直接降低了用户体验,同时高昂的带宽成本也给企业预算带来巨大压力。此外,不同云厂商的网络配置复杂且缺乏统一标准,使得新业务的部署与调整变得繁琐低效,严重影响交付进度。

完成部署后,灵活性也是企业不得不考虑的问题,当业务流量激增时,传统网络架构难以快速扩展,导致服务稳定性下降,甚至发生中断风险。与此同时,运维团队面临监控分散、问题排查困难的挑战,而数据安全与合规性要求的提升,也让企业在AI业务拓展过程中倍感压力。

另外,在大模型训练数据获取方面,为了获取场景丰富的高质量标注数据,AI企业需要从海外拉取数据,而跨境数据传输慢,网络不稳定等问题,严重降低了训练效率,进而直接影响到AI产品迭代的速度。

在诸多难题面前,AI 企业怎样才能实现破局?不妨以一家文生视频大模型企业所采用的网络解决方案作为背景,一同探究企业如何轻装上阵,构建出可靠且灵活的AI分布式推理网络 。



客户案例:领先AI企业的破局之道


某领先AI企业,专注于多模态大模型的研发,提供文生视频、图生视频等MaaS(模型即服务)产品。他们的业务覆盖全球,依赖于百度云、阿里云、AWS、华为云、腾讯云、火山云等多家公有云服务。


然而,随着业务规模的扩大,他们遇到了两大核心挑战:

多云网络割裂:业务分布在多个公有云平台,网络互通效率低,运维成本高。

海外数据拉取慢:模型训练需要大量海外数据,但跨境传输延迟高,严重拖慢训练效率。

为了解决这些问题,他们选择了融合网络架构解决方案,成功实现了多云互联与跨境加速,大幅提升了业务效率。



三大技术利器,重构AI业务网络


01、混合多云网络:分布式推理的高速路网


三层网络架构:借助已与公有云预连接的云网络服务,可在一天内实现多云服务上线,一张网打通多家公有云和推理算力中心,实现算力资源池化。无论是前端服务平台还是后端推理服务,都能高效协同。

高可靠网络:对核心业务,通过双链路负载冗余部署的方式,在一条链路出现异常时,另一条链路能够即刻无缝承接业务流量,以此确保业务始终稳定运行,实现零中断,全方位保障卓越的用户体验。

弹性扩展:能够有力支持企业依据实际需求,自由灵活地增加或减少云节点数量以及调整带宽大小。在业务呈现爆发式增长态势时,该功能可迅速适配,帮助企业轻松应对,实现快速、稳健的规模扩展,为企业发展提供坚实有力的支撑 。


02、海外数据采集:专线稳流,轻装智取


专线级稳定性:通过专线实现跨境数据传输服务,安全、稳定、合规,绕开公网拥堵,数据拉取效率提升50%以上。

轻量级部署,一站式服务:依托犀思云全球边缘云节点,为客户提供一站式跨境数据加速服务。客户无需自行部署境外网络节点,即可借助这一便捷服务,迅速且轻松地完成国外大模型训练数据的拉取工作,极大简化操作流程,提升数据获取效率。



03、统一平台管理:全网状态一目了然


可视化管理平台:一平台管理多云推理业务和跨境加速业务网络,可实时监控多云流量、节点健康度,全网状态一目了然。

智能运维:支持自动告警、策略配置,释放客户IT人力,让企业专注于AI业务创新。



从“负重前行”到“轻装上阵”


通过这一解决方案,客户不仅解决了多云网络和跨境加速的难题,同时在降本增效及业务赋能上效果显著:

降本增效成果显著:

  • 网络运维成本削减达 30%,专线费用节省超过 20%
  • 业务部署周期从原本的月级大幅缩短至天级,效率提升效果显著。

业务赋能成效突出:

  • 有力支持分布式 AI 推理业务,加速 AI 产品商业化进程,推动其更快落地。
  • 实现全球算力的灵活调度,从容应对多元场景下的复杂需求 。


在AI浪潮汹涌澎湃的当下,企业面临的多云网络困局并非不可逾越。通过融合网络架构解决方案的成功实践,我们看到了AI企业实现网络架构破局的曙光。这张“网”不仅解决了多云互联、跨境加速、运维管理等一系列难题,还为企业带来了降本增效、业务赋能的显著价值。

相关文章
|
18天前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
351 124
|
13天前
|
SQL 人工智能 数据可视化
高校迎新管理系统:基于 smardaten AI + 无代码开发实践
针对高校迎新痛点,基于smardaten无代码平台构建全流程数字化管理系统,集成信息采集、绿色通道、宿舍管理等七大模块,通过AI生成框架、可视化配置审批流与权限,实现高效、精准、可扩展的迎新服务,大幅提升管理效率与新生体验。
|
19天前
|
存储 消息中间件 人工智能
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
65 11
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
|
19天前
|
存储 人工智能 NoSQL
用Context Offloading解决AI Agent上下文污染,提升推理准确性
上下文工程是将AI所需信息(如指令、数据、工具等)动态整合到模型输入中,以提升其表现。本文探讨了“上下文污染”问题,并提出“上下文卸载”策略,通过LangGraph实现,有效缓解长文本处理中的信息干扰与模型幻觉,提升AI代理的决策准确性与稳定性。
92 2
用Context Offloading解决AI Agent上下文污染,提升推理准确性
|
8天前
|
SQL 人工智能 数据挖掘
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
Apache Doris 4.0 原生集成 LLM 函数,将大语言模型能力深度融入 SQL 引擎,实现文本处理智能化与数据分析一体化。通过十大函数,支持智能客服、内容分析、金融风控等场景,提升实时决策效率。采用资源池化管理,保障数据一致性,降低传输开销,毫秒级完成 AI 分析。结合缓存复用、并行执行与权限控制,兼顾性能、成本与安全,推动数据库向 AI 原生演进。
47 0
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
|
25天前
|
调度 开发者 异构计算
冠军10万美金!AMD 2025 分布式推理算子优化挑战赛来了
冠军10万美金!AMD 2025 分布式推理算子优化挑战赛来了
202 13
|
19天前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。
|
19天前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
19天前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。