路径规划算法:基向量加权优化的机器人路径规划算法- 附matlab代码

简介: 路径规划算法:基向量加权优化的机器人路径规划算法- 附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在机器人路径规划中,路径的选择和优化是一个关键问题。为了提高机器人的路径规划效率和准确性,基向量加权优化的算法被广泛应用。

基向量加权优化的机器人路径规划算法是一种基于向量加权的优化方法。它通过将路径规划问题转化为向量加权的优化问题,从而在保证路径连续性和平滑性的基础上,寻找到最优路径。

该算法的核心思想是将路径规划问题转化为一个优化问题,并通过引入加权向量的概念,对路径进行优化。在路径规划的过程中,通过对路径上的各个点进行加权,可以根据不同的需求和约束条件来调整路径的权重,从而得到最优路径。

基向量加权优化的机器人路径规划算法具有以下优点。首先,它可以有效地解决路径规划中的局部最优问题,避免陷入局部最优解而无法找到全局最优路径。其次,该算法可以根据不同的需求和约束条件进行灵活调整,适用于各种不同的路径规划场景。最后,基向量加权优化的机器人路径规划算法能够在保证路径平滑性和连续性的同时,提高路径规划的效率和准确性。

总之,基向量加权优化的机器人路径规划算法是一种有效的路径规划方法。通过将路径规划问题转化为向量加权的优化问题,该算法可以在保证路径连续性和平滑性的基础上,找到最优路径。它具有解决局部最优问题、灵活调整路径权重和提高路径规划效率的优点。在未来的机器人路径规划研究和应用中,基向量加权优化的算法将发挥重要作用。

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

目标函数设定


⛄ 部分代码

function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

⛄ 运行结果

⛄ 参考文献

[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].

[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
4天前
|
算法 物联网 定位技术
基于WIFI指纹的室内定位算法matlab仿真
基于WIFI指纹的室内定位算法matlab仿真
|
22小时前
|
算法 测试技术 C++
【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II
【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II
|
1天前
|
机器学习/深度学习 算法
【MATLAB】VMD_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】VMD_ MFE_SVM_LSTM 神经网络时序预测算法
10 2
|
2天前
|
机器学习/深度学习 算法
【MATLAB】小波 MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】小波 MFE_SVM_LSTM 神经网络时序预测算法
17 4
|
2天前
|
机器学习/深度学习 算法 计算机视觉
基于局部信息提取的人脸标志检测算法matlab仿真
基于局部信息提取的人脸标志检测算法matlab仿真
|
2天前
|
机器学习/深度学习 数据采集 监控
基于yolov2深度学习网络的车辆检测算法matlab仿真,包括白天场景和夜晚场景
基于yolov2深度学习网络的车辆检测算法matlab仿真,包括白天场景和夜晚场景
|
2天前
|
机器学习/深度学习 算法
【MATLAB】ICEEMDAN_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】ICEEMDAN_ MFE_SVM_LSTM 神经网络时序预测算法
16 2
|
3天前
|
算法 计算机视觉
基于Harris角点的多视角图像全景拼接算法matlab仿真
基于Harris角点的多视角图像全景拼接算法matlab仿真
|
4天前
|
机器学习/深度学习 算法
【MATLAB】CEEMDAN_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】CEEMDAN_ MFE_SVM_LSTM 神经网络时序预测算法
17 4
|
4天前
|
机器学习/深度学习 算法
【MATLAB】CEEMD_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】CEEMD_ MFE_SVM_LSTM 神经网络时序预测算法
11 0

热门文章

最新文章

相关产品