✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
在机器人路径规划中,路径的选择和优化是一个关键问题。为了提高机器人的路径规划效率和准确性,基向量加权优化的算法被广泛应用。
基向量加权优化的机器人路径规划算法是一种基于向量加权的优化方法。它通过将路径规划问题转化为向量加权的优化问题,从而在保证路径连续性和平滑性的基础上,寻找到最优路径。
该算法的核心思想是将路径规划问题转化为一个优化问题,并通过引入加权向量的概念,对路径进行优化。在路径规划的过程中,通过对路径上的各个点进行加权,可以根据不同的需求和约束条件来调整路径的权重,从而得到最优路径。
基向量加权优化的机器人路径规划算法具有以下优点。首先,它可以有效地解决路径规划中的局部最优问题,避免陷入局部最优解而无法找到全局最优路径。其次,该算法可以根据不同的需求和约束条件进行灵活调整,适用于各种不同的路径规划场景。最后,基向量加权优化的机器人路径规划算法能够在保证路径平滑性和连续性的同时,提高路径规划的效率和准确性。
总之,基向量加权优化的机器人路径规划算法是一种有效的路径规划方法。通过将路径规划问题转化为向量加权的优化问题,该算法可以在保证路径连续性和平滑性的基础上,找到最优路径。它具有解决局部最优问题、灵活调整路径权重和提高路径规划效率的优点。在未来的机器人路径规划研究和应用中,基向量加权优化的算法将发挥重要作用。
室内环境栅格法建模步骤
1.栅格粒大小的选取
栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。
栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。
2.障碍物栅格确定
当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.
3.未知环境的栅格地图的建立
通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。
备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。
目标函数设定
⛄ 部分代码
function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5); % 起点for i=1:L-1 plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10) hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5); % 终点
⛄ 运行结果
⛄ 参考文献
[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].
[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.
[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).