路径规划算法:基于寄生捕食优化的机器人路径规划算法- 附matlab代码

简介: 路径规划算法:基于寄生捕食优化的机器人路径规划算法- 附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

 

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

近年来,随着工业4.0的兴起,国内外制造业都在积极进行智能化的转型升级。 作为生产制造环节的搬运工———移动机器人,其在制造业中的重要程度与日俱增。 作为移动机器人关键技术之一的路径规划技术,其在很大程度上决定了机器人本身乃至整条生产线智能化的水平,引发了国内外专家的研究热潮。 机器人的路径规划是指在满足机器人工作条件的基础上,尽可能地找到一条从初始点到目标点的最短且能避开障碍、保证自身安全的路径。为此,针对路径规划问题,国内外专家及学者们提出了许多经典的算法,诸如A*算法、遗传算法、模拟退化算法、启发式搜索法、粒子群算法及蚁群算法等,它们都已应用于机器人的路径规划研究中,并取得了较好的成果。

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

目标函数设定

image.gif编辑

模型原理

基于寄生捕食优化的机器人路径规划算法是一种基于仿生智能的算法,在机器人路径规划问题中应用了寄生捕食行为的优化策略。

该算法的主要思想是模拟寄生捕食行为中的寄生虫对其宿主的寄生过程,通过寄生虫寻找宿主的过程来优化机器人路径规划。具体步骤如下:

    1. 初始化:设定起始点和目标点,并初始化一群随机生成的路径作为初始解。
    2. 评估路径:对每条路径进行评估,计算其适应度值,可以根据问题的具体要求设计适应度函数。
    3. 寄生捕食过程:选择适应度值较高的路径作为宿主,对其进行寄生操作。这里可以采用一种变异操作,如交叉、变异等,产生一系列新的路径作为寄生虫。
    4. 评估寄生虫:对生成的新路径进行评估,计算其适应度值。
    5. 更新路径:根据适应度值,选择较优的路径作为下一轮迭代的宿主,更新当前最优路径。
    6. 终止条件:当达到预设的终止条件(如迭代次数、适应度值达到一定阈值等)时,停止算法并输出最优路径。
    7. 输出结果:得到优化后的路径。

    通过模拟寄生捕食行为,该算法可以在搜索空间中不断寻找更优的路径解。然而,具体的实现和效果还需要根据具体的问题和算法细节进行评估。此外,寄生捕食优化算法还可以结合其他启发式搜索算法或优化方法进行改进,以提高路径规划的效果和性能。

    ⛄ 部分代码

    function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

    ⛄ 运行结果

    image.gif编辑

     

    image.gif编辑

    ⛄ 参考文献

    [1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].

    [2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

    [3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).

    ⛳️ 代码获取关注我

    ❤️部分理论引用网络文献,若有侵权联系博主删除
    ❤️ 关注我领取海量matlab电子书和数学建模资料

    🍅 仿真咨询

    1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
    4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
    5.传感器部署优化、通信协议优化、路由优化、目标定位
    6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
    7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
    8.微电网优化、无功优化、配电网重构、储能配置
    9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长
    目录
    打赏
    0
    0
    0
    0
    845
    分享
    相关文章
    基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
    本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
    基于模糊神经网络的金融序列预测算法matlab仿真
    本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
    基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
    本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
    基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
    本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
    |
    7月前
    |
    【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
    本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
    300 6
    【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
    【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
    本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
    181 3
    【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
    【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
    本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
    211 0
    【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
    耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
    地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
    基于混合整数规划的微网储能电池容量规划(matlab代码)
    基于混合整数规划的微网储能电池容量规划(matlab代码)
    含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
    含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

    热门文章

    最新文章

    目录
    目录