【2023年更新计划】matlab相关机器学习应用研究计划及进程

简介: 【2023年更新计划】matlab相关机器学习应用研究计划及进程

【2023年更新计划】matlab相关机器学习应用研究计划及进程


欢迎大家在评论区互动,可优先研究大家疑惑点较多的领域或方向。


一、区间/分位数预测


【已完成】lasso分位数回归

1.lasso分位数回归

2.CNN-LSTM分位数回归

3.Adaboost LstmAttention 分位数回归

4.ARIMA不同思路置信区间预测



二、回归/时间序列预测


【已完成】xgboost多输入多输出回归预测

【已完成】Catboost回归

【已完成】LSTM峰值检测【已完成】GAN回归预测

【已完成】KNN时间序列预测

【已完成】GWO-GMDH时间序列预测

【已完成】LSTM单列数据滑动窗口预测未来

【已完成】LSTM结合进化算法优化(增加优化层数、选择单双向等功能,结果稳定已操作)

1.Catboost回归

2.LSTM结合进化算法优化(增加优化层数、选择单双向等功能,结果稳定已操作)

3.LSTM多输入单输出预测未来

4.LSTM单列数据滑动窗口预测未来

5.SVR输入新数据预测

6.LSTM回归预测(应用于单调递增/递减数据)

7.LSTM峰值检测

8.CNN非工具箱输入新数据预测

9.GAN回归预测


三、分类预测


【已完成】xgboost多分类

【已完成】ssa-xgboost多分类

1.xgboost多分类


四、进化算法


【已完成】2023年进化算法不同优化思路对比

1.2023年进化算法不同优化思路对比


五、敏感性分析


1.sobol


六、插值


【已完成】LSTM / ANN中间插值APP。

【已完成】五种方法中间插值,空值/0值插值。

1.复杂数据插值运行程序(中间插值,空值/0值插值,首尾插值)


七、GUI封装


1.贝叶斯优化神经网络算法封装+GUI界面模板

2.多进化算法优化LSTM分类GUI

3.ARIMA封装(验证+预测未来+滚动预测更新模型)

4.敏感性分析方法封装+GUI

5.万能插值GUI


八、集成


【已完成】adaboost四弱分类器集成多分类。

1.多种模型集成对比


相关文章
|
14天前
|
机器学习/深度学习
自动化机器学习研究MLR-Copilot:利用大型语言模型进行研究加速
【10月更文挑战第21天】在科技快速发展的背景下,机器学习研究面临诸多挑战。为提高研究效率,研究人员提出了MLR-Copilot系统框架,利用大型语言模型(LLM)自动生成和实施研究想法。该框架分为研究想法生成、实验实施和实施执行三个阶段,通过自动化流程显著提升研究生产力。实验结果显示,MLR-Copilot能够生成高质量的假设和实验计划,并显著提高任务性能。然而,该系统仍需大量计算资源和人类监督。
20 4
|
5月前
|
机器学习/深度学习 数据采集 搜索推荐
机器学习在智能推荐系统中的个性化算法研究
机器学习在智能推荐系统中的个性化算法研究
|
2月前
|
监控 开发者 Perl
探索研究Perl 进程管理
【9月更文挑战第21天】
26 6
|
3月前
|
机器学习/深度学习 存储 分布式计算
Hadoop与机器学习的融合:案例研究
【8月更文第28天】随着大数据技术的发展,Hadoop已经成为处理大规模数据集的重要工具。同时,机器学习作为一种数据分析方法,在各个领域都有着广泛的应用。本文将介绍如何利用Hadoop处理大规模数据集,并结合机器学习算法来挖掘有价值的信息。我们将通过一个具体的案例研究——基于用户行为数据预测用户留存率——来展开讨论。
216 0
|
4月前
|
机器学习/深度学习 人工智能 API
在人工智能和机器学习的领域中,语音识别(Speech Recognition,SR)是一个重要的研究方向。它旨在将人类的语音转换为计算机可读的文本。
在人工智能和机器学习的领域中,语音识别(Speech Recognition,SR)是一个重要的研究方向。它旨在将人类的语音转换为计算机可读的文本。
|
4月前
|
算法 安全 数据挖掘
随机数生成方法及其在Matlab中的应用
随机数生成方法及其在Matlab中的应用
|
5月前
|
算法 数据可视化 数据挖掘
MATLAB中常用的数学函数及其应用示例
MATLAB中常用的数学函数及其应用示例
|
6月前
|
机器学习/深度学习 边缘计算 人工智能
利用机器学习优化数据中心能效的研究
【5月更文挑战第21天】 在数据中心运营的成本结构中,能源消耗占据了显著的比例。随着计算需求的不断增长,如何在保持高性能的同时降低能耗成为一大挑战。本文通过探索机器学习技术在数据中心能源管理中的应用,提出了一种新的能效优化框架。该框架采用预测算法动态调整资源分配,并通过仿真实验证明其在降低能耗和提高资源利用率方面的有效性。研究结果不仅对理解数据中心能源消耗模式具有理论意义,也为实际操作提供了可行的节能策略。
|
6月前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
76 2
|
6月前
|
数据可视化 算法
MATLAB Simulink 单相桥式整流电路性能研究
MATLAB Simulink 单相桥式整流电路性能研究
61 2
下一篇
无影云桌面