绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

简介: 绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程


让算力资源用到极致,是每一位开发者的必修课。


自从大模型变成热门趋势之后,GPU 就成了紧俏的物资。很多企业的储备都不一定充足,更不用说个人开发者了。有没有什么方法可以更高效的利用算力训练模型?在最近的一篇博客,Sebastian Raschka 介绍了「梯度累积」的方法,能够在 GPU 内存受限时使用更大 batch size 训练模型,绕开硬件限制。在此之前,Sebastian Raschka 也分享过一篇运用多 GPU 训练策略加速大型语言模型微调的文章,包括模型或 tensor sharding 等机制,这些机制将模型权重和计算分布在不同的设备上,以解决 GPU 的内存限制。微调 BLOOM 模型进行分类假设我们有兴趣采用近期预训练的大型语言模型来处理文本分类等下游任务。那么,我们可能会选择使用 GPT-3 的开源替代品 BLOOM 模型,特别是「仅有」 5.6 亿个参数的 BLOOM 版本 —— 它应该可以毫无问题地融入至传统 GPU 的 RAM 中(Google Colab 免费版本拥有 15 Gb RAM 的 GPU)。一旦开始,就很可能遇到问题:内存会在训练或微调期间迅速增加。训练这个模型的唯一方法是使批大小为 1(batch size=1)。使用批大小为 1(batch size=1)为目标分类任务微调 BLOOM 的代码如下所示。你也可以在 GitHub 项目页面下载完整代码:https://github.com/rasbt/gradient-accumulation-blog/blob/main/src/1_batchsize-1.py你可以将此代码直接复制并粘贴到 Google Colab 中,但还必须将随附的 local_dataset_utilities.py 文件拖放到从该文件导入了一些数据集实用程序的同一文件夹中。

# pip install torch lightning matplotlib pandas torchmetrics watermark transformers datasets -U
import os
import os.path as op
import time
from datasets import load_dataset
from lightning import Fabric
import torch
from torch.utils.data import DataLoader
import torchmetrics
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from watermark import watermark
from local_dataset_utilities import download_dataset, load_dataset_into_to_dataframe, partition_dataset
from local_dataset_utilities import IMDBDataset
def tokenize_text (batch):
    return tokenizer (batch ["text"], truncation=True, padding=True, max_length=1024)
def train (num_epochs, model, optimizer, train_loader, val_loader, fabric):
    for epoch in range (num_epochs):
        train_acc = torchmetrics.Accuracy (
            task="multiclass", num_classes=2).to (fabric.device)
        for batch_idx, batch in enumerate (train_loader):
            model.train ()
            ### FORWARD AND BACK PROP
            outputs = model (
                batch ["input_ids"],
                attention_mask=batch ["attention_mask"],
                labels=batch ["label"]
            ) 
            fabric.backward (outputs ["loss"])
            ### UPDATE MODEL PARAMETERS
            optimizer.step ()
            optimizer.zero_grad ()
            ### LOGGING
            if not batch_idx % 300:
                print (f"Epoch: {epoch+1:04d}/{num_epochs:04d}"
                      f"| Batch {batch_idx:04d}/{len (train_loader):04d}"
                      f"| Loss: {outputs ['loss']:.4f}")
            model.eval ()
            with torch.no_grad ():
                predicted_labels = torch.argmax (outputs ["logits"], 1)
                train_acc.update (predicted_labels, batch ["label"])
        ### MORE LOGGING
        model.eval ()
        with torch.no_grad ():
            val_acc = torchmetrics.Accuracy (task="multiclass", num_classes=2).to (fabric.device)
            for batch in val_loader:
                outputs = model (
                    batch ["input_ids"],
                    attention_mask=batch ["attention_mask"],
                    labels=batch ["label"]
                )
                predicted_labels = torch.argmax (outputs ["logits"], 1)
                val_acc.update (predicted_labels, batch ["label"])
            print (f"Epoch: {epoch+1:04d}/{num_epochs:04d}"
                  f"| Train acc.: {train_acc.compute ()*100:.2f}%"
                  f"| Val acc.: {val_acc.compute ()*100:.2f}%"
                  )
            train_acc.reset (), val_acc.reset ()
if __name__ == "__main__":
    print (watermark (packages="torch,lightning,transformers", python=True))
    print ("Torch CUDA available?", torch.cuda.is_available ())
    device = "cuda" if torch.cuda.is_available () else "cpu"
    torch.manual_seed (123)
    # torch.use_deterministic_algorithms (True)
    ##########################
    ### 1 Loading the Dataset
    ##########################
    download_dataset ()
    df = load_dataset_into_to_dataframe ()
    if not (op.exists ("train.csv") and op.exists ("val.csv") and op.exists ("test.csv")):
        partition_dataset (df)
    imdb_dataset = load_dataset (
        "csv",
        data_files={
            "train": "train.csv",
            "validation": "val.csv",
            "test": "test.csv",
        },
    )
    #########################################
    ### 2 Tokenization and Numericalization
    #########################################
    tokenizer = AutoTokenizer.from_pretrained ("bigscience/bloom-560m", max_length=1024)
    print ("Tokenizer input max length:", tokenizer.model_max_length, flush=True)
    print ("Tokenizer vocabulary size:", tokenizer.vocab_size, flush=True)
    print ("Tokenizing ...", flush=True)
    imdb_tokenized = imdb_dataset.map (tokenize_text, batched=True, batch_size=None)
    del imdb_dataset
    imdb_tokenized.set_format ("torch", columns=["input_ids", "attention_mask", "label"])
    os.environ ["TOKENIZERS_PARALLELISM"] = "false"
    #########################################
    ### 3 Set Up DataLoaders
    #########################################
    train_dataset = IMDBDataset (imdb_tokenized, partition_key="train")
    val_dataset = IMDBDataset (imdb_tokenized, partition_key="validation")
    test_dataset = IMDBDataset (imdb_tokenized, partition_key="test")
    train_loader = DataLoader (
        dataset=train_dataset,
        batch_size=1,
        shuffle=True,
        num_workers=4,
        drop_last=True,
    )
    val_loader = DataLoader (
        dataset=val_dataset,
        batch_size=1,
        num_workers=4,
        drop_last=True,
    )
    test_loader = DataLoader (
        dataset=test_dataset,
        batch_size=1,
        num_workers=2,
        drop_last=True,
    )
    #########################################
    ### 4 Initializing the Model
    #########################################
    fabric = Fabric (accelerator="cuda", devices=1, precision="16-mixed")
    fabric.launch ()
    model = AutoModelForSequenceClassification.from_pretrained (
        "bigscience/bloom-560m", num_labels=2)
    optimizer = torch.optim.Adam (model.parameters (), lr=5e-5)
    model, optimizer = fabric.setup (model, optimizer)
    train_loader, val_loader, test_loader = fabric.setup_dataloaders (
        train_loader, val_loader, test_loader)
    #########################################
    ### 5 Finetuning
    #########################################
    start = time.time ()
    train (
        num_epochs=1,
        model=model,
        optimizer=optimizer,
        train_loader=train_loader,
        val_loader=val_loader,
        fabric=fabric,
    )
    end = time.time ()
    elapsed = end-start
    print (f"Time elapsed {elapsed/60:.2f} min")
    with torch.no_grad ():
        model.eval ()
        test_acc = torchmetrics.Accuracy (task="multiclass", num_classes=2).to (fabric.device)
        for batch in test_loader:
            outputs = model (
                batch ["input_ids"],
                attention_mask=batch ["attention_mask"],
                labels=batch ["label"]
            )
            predicted_labels = torch.argmax (outputs ["logits"], 1)
            test_acc.update (predicted_labels, batch ["label"])
    print (f"Test accuracy {test_acc.compute ()*100:.2f}%")


作者使用了 Lightning Fabric,因为它可以让开发者在不同硬件上运行此代码时灵活地改变 GPU 数量和多 GPU 训练策略。它还允许仅通过调整查准率 flag 来启用混合精度训练(mixed-precision training)。在这种情况下,混合精度训练可以将训练速度提高三倍,并将内存需求降低约 25%。上面展示的主要代码都是在主函数(if __name__ == "__main__" 的 context)中执行的,即使只使用单个 GPU,也推荐使用 PyTorch 运行环境执行多 GPU 训练。而后,包含在 if __name__ == "__main__" 中的以下三个代码部分负责数据加载:

# 1 加载数据集

# 2 token 化和数值化

# 3 设置数据加载器


第 4 节是初始化模型(Initializing the Model)中,然后在第 5 节 微调(Finetuning)中,调用 train 函数,这是开始让事情变得有趣的地方。在 train (...) 函数中,实现了标准的 PyTorch 循环。核心训练循环的注释版本如下所示:批大小为 1(Batch size=1)的问题是梯度更新将会变得非常混乱和困难,正如下述训练模型时基于波动的训练损失和糟糕的测试集性能所看到的:


...
torch : 2.0.0
lightning : 2.0.0
transformers: 4.27.2
Torch CUDA available? True
...
Epoch: 0001/0001 | Batch 23700/35000 | Loss: 0.0969
Epoch: 0001/0001 | Batch 24000/35000 | Loss: 1.9902
Epoch: 0001/0001 | Batch 24300/35000 | Loss: 0.0395
Epoch: 0001/0001 | Batch 24600/35000 | Loss: 0.2546
Epoch: 0001/0001 | Batch 24900/35000 | Loss: 0.1128
Epoch: 0001/0001 | Batch 25200/35000 | Loss: 0.2661
Epoch: 0001/0001 | Batch 25500/35000 | Loss: 0.0044
Epoch: 0001/0001 | Batch 25800/35000 | Loss: 0.0067
Epoch: 0001/0001 | Batch 26100/35000 | Loss: 0.0468
Epoch: 0001/0001 | Batch 26400/35000 | Loss: 1.7139
Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.9570
Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.1857
Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0090
Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.9790
Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0503
Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.2625
Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.1010
Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0035
Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0009
Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0234
Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.8394
Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.9497
Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.1437
Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.1317
Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0112
Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0073
Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.7393
Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0512
Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.1337
Epoch: 0001/0001 | Batch 32400/35000 | Loss: 1.1875
Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.2727
Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.1545
Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0022
Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.2681
Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.2467
Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0620
Epoch: 0001/0001 | Batch 34500/35000 | Loss: 2.5039
Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0131
Epoch: 0001/0001 | Train acc.: 75.11% | Val acc.: 78.62%
Time elapsed 69.97 min
Test accuracy 78.53%


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
存储 算法 数据挖掘
重磅发布 | OpenSearch推出向量检索GPU图算法方案并支持GPU规格售卖
OpenSearch向量检索版推出了面向企业开发者的GPU图算法方案(CAGRA算法),支持客户直接购买GPU规格节点,是国内首家支持GPU规格的向量检索产品。
193 12
|
3月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
7月前
|
机器学习/深度学习 数据采集 算法
Python实现GBDT(梯度提升树)回归模型(GradientBoostingRegressor算法)项目实战
Python实现GBDT(梯度提升树)回归模型(GradientBoostingRegressor算法)项目实战
|
7月前
|
机器学习/深度学习 数据采集 算法
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
|
8月前
|
机器学习/深度学习 算法
梯度提升树GBDT系列算法
在Boosting集成算法当中,我们逐一建立多个弱评估器(基本是决策树),并且下一个弱评估器的建立方式依赖于上一个弱评估器的评估结果,最终综合多个弱评估器的结果进行输出。
|
8月前
|
机器学习/深度学习 算法
机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略
【6月更文挑战第28天】**机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略。工具如scikit-optimize、Optuna助力优化,迁移学习和元学习提供起点,集成方法则通过多模型融合提升性能。资源与时间考虑至关重要,交叉验证和提前停止能有效防止过拟合。**
99 0
|
9月前
|
机器学习/深度学习 自然语言处理 算法
【大模型】关于减轻 LLM 训练数据和算法中偏差的研究
【5月更文挑战第6天】【大模型】关于减轻 LLM 训练数据和算法中偏差的研究
|
9月前
|
机器学习/深度学习 算法 Python
探索Python中的基础算法:梯度提升机(GBM)
探索Python中的基础算法:梯度提升机(GBM)
495 2
|
9月前
|
机器学习/深度学习 算法 数据可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
|
9月前
|
机器学习/深度学习 算法 数据可视化
R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

热门文章

最新文章