LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调

简介: LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调

参考资料

GPT2 FineTuning

OpenAI-GPT2

Kaggle short-jokes 数据集

Why will you need fine-tuning an LLM?

LLMs are generally trained on public data with no specific focus. Fine-tuning is a crucial step that adapts a pre-trained LLM model to a specific task, enhancing the LLM responses significantly. Although text generation is a well-known application of an LLM, the neural network embeddings obtained from the model are equally valuable for various downstream applications.

项目地址

https://huggingface.co/openai-community/gpt2

安装依赖

这边建议独立环境,避免相互影响。可看LLM-01 和 LLM-02 章节中的 Pyenv 的使用

pip install transformers

下载模型

有很多方式下载 HuggingFace的模型:

  • 利用官方提供的 huggingface_hub库 下载
  • 直接下载(比如Git方式)
  • 镜像代理下载(国内,如果没有科学上网的话)
  • 其他···

这里提供一个例子,运行可以自动把模型下载下来

from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
  
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")

直接运行,可以看到如下的效果:

数据下载

项目地址: 参考的项目

数据来自 Kaggle 一个短笑话合集 10MB(压缩后)

下载链接

编写代码

加载数据

class JokesDataset(Dataset):
    def __init__(self, jokes_dataset_path = './'):
        super().__init__()

        short_jokes_path = os.path.join(jokes_dataset_path, 'shortjokes.csv')

        self.joke_list = []
        self.end_of_te xt_token = "<|endoftext|>"

        with open(short_jokes_path) as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=',')

            x = 0
            for row in csv_reader:
                joke_str = f"JOKE:{row[1]}{self.end_of_text_token}"
                self.joke_list.append(joke_str)

    def __len__(self):
        return len(self.joke_list)

    def __getitem__(self, item):
        return self.joke_list[item]

加载模型

# 如果你是默认的 那应该是:openai-community/gpt2
model_path = "./gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)
model = model.to(device)

训练代码


for epoch in range(EPOCHS):
    
    print(f"EPOCH {epoch} started" + '=' * 30)
    
    for idx,joke in enumerate(joke_loader):
        
        #################### "Fit as many joke sequences into MAX_SEQ_LEN sequence as possible" logic start ####
        joke_tens = torch.tensor(tokenizer.encode(joke[0])).unsqueeze(0).to(device)
        #Skip sample from dataset if it is longer than MAX_SEQ_LEN
        if joke_tens.size()[1] > MAX_SEQ_LEN:
            continue
        
        #The first joke sequence in the sequence
        if not torch.is_tensor(tmp_jokes_tens):
            tmp_jokes_tens = joke_tens
            continue
        else:
            #The next joke does not fit in so we process the sequence and leave the last joke 
            #as the start for next sequence 
            if tmp_jokes_tens.size()[1] + joke_tens.size()[1] > MAX_SEQ_LEN:
                work_jokes_tens = tmp_jokes_tens
                tmp_jokes_tens = joke_tens
            else:
                #Add the joke to sequence, continue and try to add more
                tmp_jokes_tens = torch.cat([tmp_jokes_tens, joke_tens[:,1:]], dim=1)
                continue
        ################## Sequence ready, process it trough the model ##################
            
        outputs = model(work_jokes_tens, labels=work_jokes_tens)
        loss, logits = outputs[:2]                        
        loss.backward()
        sum_loss = sum_loss + loss.detach().data
                       
        proc_seq_count = proc_seq_count + 1
        if proc_seq_count == BATCH_SIZE:
            proc_seq_count = 0    
            batch_count += 1
            optimizer.step()
            scheduler.step() 
            optimizer.zero_grad()
            model.zero_grad()

        if batch_count == 100:
            print(f"sum loss {sum_loss}")
            batch_count = 0
            sum_loss = 0.0
    
    # Store the model after each epoch to compare the performance of them
    torch.save(model.state_dict(), os.path.join(models_folder, f"gpt2_medium_joker_{epoch}.pt"))

保存目录

models_folder = "trained_models"
if not os.path.exists(models_folder):
    os.mkdir(models_folder)

完整代码

完整的代码如下

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import AdamW, get_linear_schedule_with_warmup
import os
import json
import csv

import logging
logging.getLogger().setLevel(logging.CRITICAL)

import warnings
warnings.filterwarnings('ignore')


class JokesDataset(Dataset):
    def __init__(self, jokes_dataset_path = './'):
        super().__init__()

        short_jokes_path = os.path.join(jokes_dataset_path, 'shortjokes.csv')

        self.joke_list = []
        self.end_of_te xt_token = "<|endoftext|>"

        with open(short_jokes_path) as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=',')

            x = 0
            for row in csv_reader:
                joke_str = f"JOKE:{row[1]}{self.end_of_text_token}"
                self.joke_list.append(joke_str)

    def __len__(self):
        return len(self.joke_list)

    def __getitem__(self, item):
        return self.joke_list[item]


device = 'mps'
if torch.cuda.is_available():
    device = 'cuda'

model_path = "./gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)
model = model.to(device)


dataset = JokesDataset()
joke_loader = DataLoader(dataset, batch_size=1, shuffle=True)

BATCH_SIZE = 16
EPOCHS = 2
LEARNING_RATE = 3e-5
WARMUP_STEPS = 5000
MAX_SEQ_LEN = 400

model.train()
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=WARMUP_STEPS, num_training_steps = -1)
proc_seq_count = 0
sum_loss = 0.0
batch_count = 0

tmp_jokes_tens = None
models_folder = "trained_models"
if not os.path.exists(models_folder):
    os.mkdir(models_folder)

for epoch in range(EPOCHS):
    
    print(f"EPOCH {epoch} started" + '=' * 30)
    
    for idx,joke in enumerate(joke_loader):
        
        #################### "Fit as many joke sequences into MAX_SEQ_LEN sequence as possible" logic start ####
        joke_tens = torch.tensor(tokenizer.encode(joke[0])).unsqueeze(0).to(device)
        #Skip sample from dataset if it is longer than MAX_SEQ_LEN
        if joke_tens.size()[1] > MAX_SEQ_LEN:
            continue
        
        #The first joke sequence in the sequence
        if not torch.is_tensor(tmp_jokes_tens):
            tmp_jokes_tens = joke_tens
            continue
        else:
            #The next joke does not fit in so we process the sequence and leave the last joke 
            #as the start for next sequence 
            if tmp_jokes_tens.size()[1] + joke_tens.size()[1] > MAX_SEQ_LEN:
                work_jokes_tens = tmp_jokes_tens
                tmp_jokes_tens = joke_tens
            else:
                #Add the joke to sequence, continue and try to add more
                tmp_jokes_tens = torch.cat([tmp_jokes_tens, joke_tens[:,1:]], dim=1)
                continue
        ################## Sequence ready, process it trough the model ##################
            
        outputs = model(work_jokes_tens, labels=work_jokes_tens)
        loss, logits = outputs[:2]                        
        loss.backward()
        sum_loss = sum_loss + loss.detach().data
                       
        proc_seq_count = proc_seq_count + 1
        if proc_seq_count == BATCH_SIZE:
            proc_seq_count = 0    
            batch_count += 1
            optimizer.step()
            scheduler.step() 
            optimizer.zero_grad()
            model.zero_grad()

        if batch_count == 100:
            print(f"sum loss {sum_loss}")
            batch_count = 0
            sum_loss = 0.0
    
    # Store the model after each epoch to compare the performance of them
    torch.save(model.state_dict(), os.path.join(models_folder, f"gpt2_medium_joker_{epoch}.pt"))

运行代码

python fine.py
• 1

执行之后,观察显卡的情况,大致占用4.6GB的显存(虽然我这里是3090 24GB的显卡,小显卡也可以正常运行)

训练过程会打印 LOSS

训练结束

经过漫长等待···

测试结果

原始模型

编写几行代码,简单测试一下:

from transformers import pipeline,GPT2LMHeadModel, GPT2Tokenizer
  
model_path = "openai-community/gpt2"
model = GPT2LMHeadModel.from_pretrained(model_path)
tokenizer = GPT2Tokenizer.from_pretrained(model_path)

text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)

texts = text_generator("Once upon a time ", max_length=50, num_return_sequences=1)
for text in texts:
    print("========================")
    print(text["generated_text"])

运行输出:

Once upon a time 『My Name is』 I'll call myself a boy. I won't reveal my true name.

微调模型

微调之后,效果就变了:

import torch
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer

model_path = "openai-community/gpt2"
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

model = GPT2LMHeadModel.from_pretrained(model_path).to(device)
tokenizer = GPT2Tokenizer.from_pretrained(model_path)

model.load_state_dict(torch.load('./trained_models/gpt2_medium_joker_9.pt', map_location='cuda:0'))
model.eval()

text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
texts = text_generator("Once upon a time ", max_length=50, num_return_sequences=1)
print("===================")
for text in texts:
    print(text["generated_text"])

测试第一次:

Once upon a time  someone in England tried to insult me by saying, "I'm Scottish."

附带翻译:

从前,有人在英格兰试图侮辱我,说:“我是苏格兰人。”笑点在于暗示苏格兰人与英格兰人有种族或地域上的不同,但实际上这种“侮辱”反而使苏格兰人自豪。

测试第二次:

Once upon a time  someone like that was  doing something wrong.  When I went to dinner


附带翻译:

从前,有个像那个人那样做错事的人。当我和他们一起吃饭时,我第一件事就是把食物掉在地上,然后引起了一场火灾。笑点在于出乎意料的行为,以及食物掉在地上导致火灾这种离奇的情节,使整个场景变得荒诞有趣。

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
128 11
200行python代码实现从Bigram模型到LLM
|
24天前
|
缓存 自然语言处理 监控
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
254 14
|
2月前
|
人工智能 数据挖掘 API
基于neo4j数据库和dify大模型框架的rag模型搭建——后续补充
基于neo4j数据库和dify大模型框架的rag模型搭建——后续补充
278 21
基于neo4j数据库和dify大模型框架的rag模型搭建——后续补充
|
2月前
|
Java 数据库 Docker
基于neo4j数据库和dify大模型框架的rag模型搭建
基于neo4j数据库和dify大模型框架的rag模型搭建
497 35
|
2月前
|
机器学习/深度学习 人工智能 算法
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
169 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
|
1月前
|
机器学习/深度学习 编解码 缓存
通义万相首尾帧图模型一键生成特效视频!
本文介绍了阿里通义发布的Wan2.1系列模型及其首尾帧生视频功能。该模型采用先进的DiT架构,通过高效的VAE模型降低运算成本,同时利用Full Attention机制确保生成视频的时间与空间一致性。模型训练分为三个阶段,逐步优化首尾帧生成能力及细节复刻效果。此外,文章展示了具体案例,并详细说明了训练和推理优化方法。目前,该模型已开源。
168 8
|
2月前
|
人工智能 编解码 搜索推荐
通义万相新模型开源,首尾帧图一键生成特效视频!
通义万相首尾帧生视频14B模型正式开源,作为首个百亿级参数规模的开源模型,可依据用户提供的开始与结束图片生成720p高清衔接视频,满足延时摄影、变身等定制化需求。用户上传两张图片或输入提示词即可完成复杂视频生成任务,支持运镜控制和特效变化。该模型基于Wan2.1架构改进,训练数据专门构建,确保高分辨率和流畅性。
162 21
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
通义千问推理模型QwQ-32B开源,更小尺寸、更强性能
阿里云发布并开源全新推理模型通义千问QwQ-32B,通过大规模强化学习,在数学、代码及通用能力上实现质的飞跃,性能比肩DeepSeek-R1。该模型大幅降低部署成本,支持消费级显卡本地部署,并集成智能体Agent相关能力。阿里云采用Apache2.0协议全球开源,用户可通过通义APP免费体验。此外,通义团队已开源200多款模型,覆盖全模态和全尺寸。
175 20

热门文章

最新文章