【Pytorch神经网络实战案例】22 基于Cora数据集实现图注意力神经网络GAT的论文分类

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 有一个记录论文信息的数据集,数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,使模型学习已有论文的分类特征,以便预测出未知分类的论文类别。

815902569f6a467a99304f9ac1482386.png


注意力机制的特点是,它的输入向量长度可变,通过将注意力集中在最相关的部分来做出决定。注意力机制结合RNN或者CNN的方法。


1 实战描述


【主要目的:将注意力机制用在图神经网络中,完成图注意力神经网络的结构和搭建】


1.1 实现目的


有一个记录论文信息的数据集,数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,使模型学习已有论文的分类特征,以便预测出未知分类的论文类别。


1.2 图注意力网络图


图注意力网络(GraphAttention Network,GAT)在GCN的基础上添加了一个隐藏的自注意力(self-attention)层。通过叠加Self-attention层,在卷积过程中可将不同的权重分配给邻域内的不同顶点,同时处理不同大小的邻域。


6b2f3b717c564cc98217fcd4209a02e0.png


在实际计算时,自注意力机制可以使用多套权重同时进行计算,并且彼此之间不共享权重,能够使顶点确定知识的相关性,是否可忽略。


2 代码编写


本次要构建的图网络


a916d8167ce14f26a0e819fb5e1b351c.png


2.1 代码实战:引入基础模块,设置运行环境----Cora_GAT.py(第1部分)


from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda
# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda


输出结果:


24b0ca48842347efab6e8091376e00a0.png


2.2 代码实现:读取并解析论文数据----Cora_GAT.py(第2部分)


# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状
# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}
# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状
# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])


输出:


a400e4d9323d474089f1a3552637f8a3.png


2.3 读取并解析论文关系数据


载入论文的关系数据,将数据中用论文ID表示的关系转化成重新编号后的关系,将每篇论文当作一个顶点,论文间的引用关系作为边,这样论文的关系数据就可以用一个图结构来表示。


b539f7004ac743998d9c96cd1e545adc.png


计算该图结构的邻接矩阵并将其转化为无向图邻接矩阵。


2.3.1 代码实现:转化矩阵----Cora_GAT.py(第3部分)


# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T


输出:


90d435af4d024da2bd67fe4695a55af6.png


2.4 代码实现:加工图结构的矩阵数据----Cora_GAT.py(第4部分)


# 1.4 加工图结构的矩阵数据
def normalize_adj(mx):
    rowsum = np.array(mx.sum(1))
    r_inv = np.power(rowsum,-0.5).flatten()
    r_inv[np.isinf(r_inv)] = 0.0
    r_mat_inv = diags(r_inv)
    return mx.dot(r_mat_inv).transpose().dot(r_mat_inv) # 兑成归一化拉普拉斯矩阵实现邻接矩阵的转化
adj = normalize_adj(adj + eye(adj.shape[0])) # 对邻接矩阵进行转化对称归一化拉普拉斯矩阵转化


2.5 将数据转化为张量,并分配运算资源


将加工好的图结构矩阵数据转为PyTorch支持的张量类型,并将其分成3份,分别用来进行训练、测试和验证。


2.5.1 代码实现:将数据转化为张量,并分配运算资源----Cora_GAT.py(第5部分)


# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签
# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序
# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引
# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)


2.6 代码实现:定义Mish激活函数与图注意力层类----Cora_GAT.py(第6部分)


# 1.6 定义Mish激活函数与图注意力层类
def mish(x): # 性能优于RElu函数
    return x * (torch.tanh(F.softplus(x)))
# 图注意力层类
class GraphAttentionLayer(nn.Module): # 图注意力层
    # 初始化
    def __init__(self,in_features,out_features,dropout=0.6):
        super(GraphAttentionLayer, self).__init__()
        self.dropout = dropout
        self.in_features = in_features # 定义输入特征维度
        self.out_features = out_features # 定义输出特征维度
        self.W = nn.Parameter(torch.zeros(size=(in_features,out_features)))
        nn.init.xavier_uniform_(self.W) # 初始化全连接权重
        self.a = nn.Parameter(torch.zeros(size=(2 * out_features,1)))
        nn.init.xavier_uniform_(self.a) # 初始化注意力权重
    def forward(self,input,adj):
        h = torch.mm(input,self.W) # 全连接处理
        N = h.size()[0]
        # 对全连接后的特征数据分别进行基于批次维度和特征维度的复制,并将复制结果连接在一起。
        # 这种操作使得顶点中的特征数据进行了充分的排列组合,结果中的每行信息都包含两个顶点特征。接下来的注意力机制便是基于每对顶点特征进行计算的。
        a_input = torch.cat([h.repeat(1,N).view(N * N ,-1),h.repeat(N,1)],dim=1).view(N,-1,2 * self.out_features) # 主要功能将顶点特征两两搭配,连接在一起,生成数据形状[N,N,2 * self.out_features]
        e = mish(torch.matmul(a_input,self.a).squeeze(2)) # 计算注意力
        zero_vec = -9e15 * torch.ones_like(e) # 初始化最小值:该值用于填充被过滤掉的特征对象atenion。如果在过滤时,直接对过滤排的特征赋值为0,那么模型会无法收敛。
        attention = torch.where(adj>0,e,zero_vec) # 过滤注意力 :按照邻接矩阵中大于0的边对注意力结果进行过滤,使注意力按照图中的顶点配对的范围进行计算。
        attention = F.softmax(attention,dim=1) # 对注意力分数进行归一化:使用F.Sofmax()函数对最终的注意力机制进行归一化,得到注意力分数(总和为1)。
        attention = F.dropout(attention,self.dropout,training=self.training)
        h_prime = torch.matmul(attention,h) # 使用注意力处理特征:将最终的注意力作用到全连接的结果上以完成计算。
        return mish(h_prime)


2.7 代码实现:搭建图注意力模型----Cora_GAT.py(第7部分)


# 1.7 搭建图注意力模型
class GAT(nn.Module):# 图注意力模型类
    def __init__(self,nfeat,nclasses,nhid,dropout,nheads): # 图注意力模型类的初始化方法,支持多套注意力机制同时运算,其参数nheads用于指定注意力的计算套数。
        super(GAT, self).__init__()
        # 注意力层
        self.attentions = [GraphAttentionLayer(nfeat,nhid,dropout) for _ in range(nheads)] # 按照指定的注意力套数生成多套注意力层
        for i , attention in enumerate(self.attentions): # 将注意力层添加到模型
            self.add_module('attention_{}'.format(i),attention)
        # 输出层
        self.out_att = GraphAttentionLayer(nhid * nheads,nclasses,dropout)
    def forward(self,x,adj): # 定义正向传播方法
        x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
        return self.out_att(x, adj)
n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433
def accuracy(output,y): # 定义函数计算准确率
    return (output.argmax(1) == y).type(torch.float32).mean().item()
### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
def step(): # 定义函数来训练模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.train()
    optimizer.zero_grad()
    output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失
    loss = F.cross_entropy(output[idx_train],labels[idx_train])
    acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率
    loss.backward()
    optimizer.step()
    return loss.item(),acc
def evaluate(idx): # 定义函数来评估模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.eval()
    output = model(features, adj) # 将全部数据载入模型,用指定索引评估模型结果
    loss = F.cross_entropy(output[idx], labels[idx]).item()
    return loss, accuracy(output[idx], labels[idx])


2.8 Ranger优化器


图卷积神经网络的层数不宜过多,一般在3层左右即可。本例将实现一个3层的图卷积神经网络,每层的维度变化如图9-15所示。


67895c9d0c2e418aa6d871d358e1939d.png


使用循环语句训练模型,并将模型结果可视化。


2.8.1 代码实现:用Ranger优化器训练模型并可视化结果----Cora_GAT.py(第8部分)


# 1.8 使用Ranger优化器训练模型并可视化
model = GAT(n_features, n_labels, 16,0.1,8).to(device) # 向GAT传入的后3个参数分别代表输出维度(16)、Dropout的丢弃率(0.1)、注意力的计算套数(8)
from tqdm import tqdm
from Cora_ranger import * # 引入Ranger优化器
optimizer = Ranger(model.parameters()) # 使用Ranger优化器
# 训练模型
epochs = 1000
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):
    tl,ta = step()
    train_loss = train_loss + [tl]
    train_acc = train_acc + [ta]
    if (i+1) % print_steps == 0 or i == 0:
        tl,ta = evaluate(idx_train)
        vl,va = evaluate(idx_val)
        val_loss = val_loss + [vl]
        val_acc = val_acc + [va]
        print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')
# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')
# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)
# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)


2.7 程序输出汇总


2.7.1 训练过程


1f819789f8a748a5a95a7c2a60f14977.png


2.7.2 训练结果


afb8b51637ce43aa825a5193d5060881.png


3 代码汇总


3.1 Cora_GAT.py


from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda
# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda
# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状
# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}
# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状
# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])
# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T
# 1.4 加工图结构的矩阵数据
def normalize_adj(mx):
    rowsum = np.array(mx.sum(1))
    r_inv = np.power(rowsum,-0.5).flatten()
    r_inv[np.isinf(r_inv)] = 0.0
    r_mat_inv = diags(r_inv)
    return mx.dot(r_mat_inv).transpose().dot(r_mat_inv) # 兑成归一化拉普拉斯矩阵实现邻接矩阵的转化
adj = normalize_adj(adj + eye(adj.shape[0])) # 对邻接矩阵进行转化对称归一化拉普拉斯矩阵转化
# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签
# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序
# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引
# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)
# 1.6 定义Mish激活函数与图注意力层类
def mish(x): # 性能优于RElu函数
    return x * (torch.tanh(F.softplus(x)))
# 图注意力层类
class GraphAttentionLayer(nn.Module): # 图注意力层
    # 初始化
    def __init__(self,in_features,out_features,dropout=0.6):
        super(GraphAttentionLayer, self).__init__()
        self.dropout = dropout
        self.in_features = in_features # 定义输入特征维度
        self.out_features = out_features # 定义输出特征维度
        self.W = nn.Parameter(torch.zeros(size=(in_features,out_features)))
        nn.init.xavier_uniform_(self.W) # 初始化全连接权重
        self.a = nn.Parameter(torch.zeros(size=(2 * out_features,1)))
        nn.init.xavier_uniform_(self.a) # 初始化注意力权重
    def forward(self,input,adj):
        h = torch.mm(input,self.W) # 全连接处理
        N = h.size()[0]
        # 对全连接后的特征数据分别进行基于批次维度和特征维度的复制,并将复制结果连接在一起。
        # 这种操作使得顶点中的特征数据进行了充分的排列组合,结果中的每行信息都包含两个顶点特征。接下来的注意力机制便是基于每对顶点特征进行计算的。
        a_input = torch.cat([h.repeat(1,N).view(N * N ,-1),h.repeat(N,1)],dim=1).view(N,-1,2 * self.out_features) # 主要功能将顶点特征两两搭配,连接在一起,生成数据形状[N,N,2 * self.out_features]
        e = mish(torch.matmul(a_input,self.a).squeeze(2)) # 计算注意力
        zero_vec = -9e15 * torch.ones_like(e) # 初始化最小值:该值用于填充被过滤掉的特征对象atenion。如果在过滤时,直接对过滤排的特征赋值为0,那么模型会无法收敛。
        attention = torch.where(adj>0,e,zero_vec) # 过滤注意力 :按照邻接矩阵中大于0的边对注意力结果进行过滤,使注意力按照图中的顶点配对的范围进行计算。
        attention = F.softmax(attention,dim=1) # 对注意力分数进行归一化:使用F.Sofmax()函数对最终的注意力机制进行归一化,得到注意力分数(总和为1)。
        attention = F.dropout(attention,self.dropout,training=self.training)
        h_prime = torch.matmul(attention,h) # 使用注意力处理特征:将最终的注意力作用到全连接的结果上以完成计算。
        return mish(h_prime)
# 1.7 搭建图注意力模型
class GAT(nn.Module):# 图注意力模型类
    def __init__(self,nfeat,nclasses,nhid,dropout,nheads): # 图注意力模型类的初始化方法,支持多套注意力机制同时运算,其参数nheads用于指定注意力的计算套数。
        super(GAT, self).__init__()
        # 注意力层
        self.attentions = [GraphAttentionLayer(nfeat,nhid,dropout) for _ in range(nheads)] # 按照指定的注意力套数生成多套注意力层
        for i , attention in enumerate(self.attentions): # 将注意力层添加到模型
            self.add_module('attention_{}'.format(i),attention)
        # 输出层
        self.out_att = GraphAttentionLayer(nhid * nheads,nclasses,dropout)
    def forward(self,x,adj): # 定义正向传播方法
        x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
        return self.out_att(x, adj)
n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433
def accuracy(output,y): # 定义函数计算准确率
    return (output.argmax(1) == y).type(torch.float32).mean().item()
### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
def step(): # 定义函数来训练模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.train()
    optimizer.zero_grad()
    output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失
    loss = F.cross_entropy(output[idx_train],labels[idx_train])
    acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率
    loss.backward()
    optimizer.step()
    return loss.item(),acc
def evaluate(idx): # 定义函数来评估模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.eval()
    output = model(features, adj) # 将全部数据载入模型,用指定索引评估模型结果
    loss = F.cross_entropy(output[idx], labels[idx]).item()
    return loss, accuracy(output[idx], labels[idx])
# 1.8 使用Ranger优化器训练模型并可视化
model = GAT(n_features, n_labels, 16,0.1,8).to(device) # 向GAT传入的后3个参数分别代表输出维度(16)、Dropout的丢弃率(0.1)、注意力的计算套数(8)
from tqdm import tqdm
from Cora_ranger import * # 引入Ranger优化器
optimizer = Ranger(model.parameters()) # 使用Ranger优化器
# 训练模型
epochs = 1000
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):
    tl,ta = step()
    train_loss = train_loss + [tl]
    train_acc = train_acc + [ta]
    if (i+1) % print_steps == 0 or i == 0:
        tl,ta = evaluate(idx_train)
        vl,va = evaluate(idx_val)
        val_loss = val_loss + [vl]
        val_acc = val_acc + [va]
        print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')
# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')
# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)
# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)


3.2 Cora_ranger.py


#Ranger deep learning optimizer - RAdam + Lookahead combined.
#https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
#Ranger has now been used to capture 12 records on the FastAI leaderboard.
#This version = 9.3.19  
#Credits:
#RAdam -->  https://github.com/LiyuanLucasLiu/RAdam
#Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
#Lookahead paper --> MZhang,G Hinton  https://arxiv.org/abs/1907.08610
#summary of changes: 
#full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights), 
#supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
#changes 8/31/19 - fix references to *self*.N_sma_threshold; 
                #changed eps to 1e-5 as better default than 1e-8.
import math
import torch
from torch.optim.optimizer import Optimizer, required
import itertools as it
class Ranger(Optimizer):
    def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95,0.999), eps=1e-5, weight_decay=0):
        #parameter checks
        if not 0.0 <= alpha <= 1.0:
            raise ValueError(f'Invalid slow update rate: {alpha}')
        if not 1 <= k:
            raise ValueError(f'Invalid lookahead steps: {k}')
        if not lr > 0:
            raise ValueError(f'Invalid Learning Rate: {lr}')
        if not eps > 0:
            raise ValueError(f'Invalid eps: {eps}')
        #parameter comments:
        # beta1 (momentum) of .95 seems to work better than .90...
        #N_sma_threshold of 5 seems better in testing than 4.
        #In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.
        #prep defaults and init torch.optim base
        defaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay)
        super().__init__(params,defaults)
        #adjustable threshold
        self.N_sma_threshhold = N_sma_threshhold
        #now we can get to work...
        #removed as we now use step from RAdam...no need for duplicate step counting
        #for group in self.param_groups:
        #    group["step_counter"] = 0
            #print("group step counter init")
        #look ahead params
        self.alpha = alpha
        self.k = k 
        #radam buffer for state
        self.radam_buffer = [[None,None,None] for ind in range(10)]
        #self.first_run_check=0
        #lookahead weights
        #9/2/19 - lookahead param tensors have been moved to state storage.  
        #This should resolve issues with load/save where weights were left in GPU memory from first load, slowing down future runs.
        #self.slow_weights = [[p.clone().detach() for p in group['params']]
        #                     for group in self.param_groups]
        #don't use grad for lookahead weights
        #for w in it.chain(*self.slow_weights):
        #    w.requires_grad = False
    def __setstate__(self, state):
        print("set state called")
        super(Ranger, self).__setstate__(state)
    def step(self, closure=None):
        loss = None
        #note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.  
        #Uncomment if you need to use the actual closure...
        #if closure is not None:
            #loss = closure()
        #Evaluate averages and grad, update param tensors
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError('Ranger optimizer does not support sparse gradients')
                p_data_fp32 = p.data.float()
                state = self.state[p]  #get state dict for this param
                if len(state) == 0:   #if first time to run...init dictionary with our desired entries
                    #if self.first_run_check==0:
                        #self.first_run_check=1
                        #print("Initializing slow buffer...should not see this at load from saved model!")
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                    #look ahead weight storage now in state dict 
                    state['slow_buffer'] = torch.empty_like(p.data)
                    state['slow_buffer'].copy_(p.data)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
                #begin computations 
                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']
                #compute variance mov avg
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                #compute mean moving avg
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                state['step'] += 1
                buffered = self.radam_buffer[int(state['step'] % 10)]
                if state['step'] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state['step']
                    beta2_t = beta2 ** state['step']
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma
                    if N_sma > self.N_sma_threshhold:
                        step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
                    else:
                        step_size = 1.0 / (1 - beta1 ** state['step'])
                    buffered[2] = step_size
                if group['weight_decay'] != 0:
                    p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
                if N_sma > self.N_sma_threshhold:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
                else:
                    p_data_fp32.add_(-step_size * group['lr'], exp_avg)
                p.data.copy_(p_data_fp32)
                #integrated look ahead...
                #we do it at the param level instead of group level
                if state['step'] % group['k'] == 0:
                    slow_p = state['slow_buffer'] #get access to slow param tensor
                    slow_p.add_(self.alpha, p.data - slow_p)  #(fast weights - slow weights) * alpha
                    p.data.copy_(slow_p)  #copy interpolated weights to RAdam param tensor
        return loss
目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
283 0
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
272 1
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
192 59
|
2月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
158 1
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
77 1
|
3月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
49 0
|
4天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
15 2
|
6天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。
|
4天前
|
存储 安全 网络安全
云计算与网络安全:探索云服务中的信息安全策略
【10月更文挑战第39天】随着云计算的飞速发展,越来越多的企业和个人将数据和服务迁移到云端。然而,随之而来的网络安全问题也日益突出。本文将从云计算的基本概念出发,深入探讨在云服务中如何实施有效的网络安全和信息安全措施。我们将分析云服务模型(IaaS, PaaS, SaaS)的安全特性,并讨论如何在这些平台上部署安全策略。文章还将涉及最新的网络安全技术和实践,旨在为读者提供一套全面的云计算安全解决方案。

热门文章

最新文章