YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。

💡💡💡本文解决的问题点:创新点为什么在自己数据集不涨点,甚至出现降点的现象???

💡💡💡原因分析:不同数据集加入创新点存在表现不一致是正常现象,甚至放在网络不同位置也存在有的位置能够涨点,有的位置降点现象!!!

💡💡💡如何解决: 将创新点放入不同网络位置并提供对应的yaml文件,总有一种能够在你数据集下高效涨点。所以还是要多做实验,做各种尝试,可能就能取得意外的涨点现象!!!

💡💡💡涨点情况:原始mAP50为0.768,改进1结构图为mAP50为0.788,改进2结构图为mAP50为0.792改进3结构图为mAP50为 0.775

改进1结构图:

image.gif

改进2结构图:

image.gif

改进3结构图:

  image.gif

 

1.YOLO11介绍

Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。

image.gif 编辑

image.gif

结构图如下:

image.gif

1.1 C3k2

C3k2,结构图如下

image.gif

C3k2,继承自类C2f,其中通过c3k设置False或者Ture来决定选择使用C3k还是Bottleneck

image.gif

实现代码ultralytics/nn/modules/block.py

1.2 C2PSA介绍

借鉴V10 PSA结构,实现了C2PSA和C2fPSA,最终选择了基于C2的C2PSA(可能涨点更好?)

image.gif

实现代码ultralytics/nn/modules/block.py

1.3 11 Detect介绍

分类检测头引入了DWConv(更加轻量级,为后续二次创新提供了改进点),结构图如下(和V8的区别):

image.gif

实现代码ultralytics/nn/modules/head.py

2.如何训练NEU-DET数据集

2.1.1 数据集介绍

直接搬运v8的就能使用

image.gif

2.1.2 超参数修改

位置如下default.yaml

image.gif

2.2.3 如何训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/11/yolo11-EMA_attention.yaml')
    #model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='data/NEU-DET.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=8,
                close_mosaic=10,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )

image.gif

2.2.4训练结果可视化结果

YOLO11n summary (fused): 238 layers, 2,583,322 parameters, 0 gradients, 6.3 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 21/21 [00:07<00:00,  2.93it/s]
                   all        324        747      0.765      0.679      0.768      0.433
               crazing         47        104      0.678      0.337      0.508       0.22
             inclusion         71        190      0.775      0.705       0.79      0.398
               patches         59        149      0.808      0.859      0.927      0.636
        pitted_surface         61         93       0.81      0.667      0.779      0.483
       rolled-in_scale         56        117      0.684      0.593       0.67      0.317
             scratches         54         94      0.833      0.915      0.934      0.544

image.gif

image.gif

3.MSCAAttention介绍

image.gif

论文:https://arxiv.org/pdf/2209.08575.p

摘要:介绍了一种用于语义分割的简单卷积网络体系结构SegNeXt。由于在编码空间信息时自我注意的效率,最近基于Transformer的模型已主导语义分割领域。在本文中,我们证明了卷积注意比Transformer中的自注意机制更有效地编码上下文信息。本文对已有成功分割方案进行了重审视并发现了几个有助于性能提升的关键成分,进而促使我们设计了一种新型的卷积注意力架构方案SegNeXt。在没有任何花哨的成分下,我们的SegNeXt显着改善了以前在流行基准测试 (包括ADE20K,Cityscapes,COCO-Stuff,Pascal VOC,Pascal Context和iSAID) 上最先进的方法的性能。值得注意的是,SegNeXt的性能优于EfficientNet-L2 w/ NAS-FPN,并且仅使用其1/10参数在Pascal VOC 2012测试一下排行榜上实现90.6% mIoU。与ad20k数据集上具有相同或更少计算的最新方法相比,SegNeXt平均实现了约2.0% mIoU改进。

 

设计了一种新的多尺度卷积注意(MSCA)模块。如图2 (a)所示,MSCA包含三个部分:深度卷积聚合局部信息,多分支深度条卷积捕获多尺度上下文,以及1×1卷积建模不同通道之间的关系。

image.gif

image.gif

4.MSCAAttention如何加入到YOLO11


4.1 yaml修改

提供多种 MSCAAttention修改方式,分别加在网络不同位置,总有一种适合你的数据集

4.1.1 yolo11-MSCAAttention.yaml

image.gif

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10
  - [-1, 1, MSCAAttention, []] # 11
# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 14
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 23 (P5/32-large)
  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

image.gif

实验结果如下:

原始mAP50为0.768,改进1结构图为mAP50为0.788

YOLO11-MSCAAttention summary (fused): 247 layers, 2,677,274 parameters, 0 gradients, 6.4 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 21/21 [00:14<00:00,  1.46it/s]
                   all        324        747      0.735      0.721      0.788      0.439
               crazing         47        104      0.667      0.404       0.57      0.238
             inclusion         71        190      0.702      0.719      0.796      0.408
               patches         59        149      0.851      0.946      0.955      0.638
        pitted_surface         61         93      0.768       0.72      0.787      0.486
       rolled-in_scale         56        117      0.659      0.644      0.714      0.321
             scratches         54         94      0.762      0.894      0.908      0.542

image.gif

4.1.2 yolo11-MSCAAttention1.yaml

image.gif

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  
  - [16, 1, MSCAAttention, []] # 23
  - [19, 1, MSCAAttention, []] # 24
  - [22, 1, MSCAAttention, []] # 25
  - [[23, 24, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)

image.gif

实验结果如下:

原始mAP50为0.768,改进2结构图为mAP50为0.792

YOLO11-MSCAAttention1 summary (fused): 265 layers, 2,719,066 parameters, 0 gradients, 6.6 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 21/21 [00:10<00:00,  1.93it/s]
                   all        324        747      0.746      0.713      0.792      0.436
               crazing         47        104      0.627       0.42      0.521      0.219
             inclusion         71        190      0.776      0.747      0.834       0.43
               patches         59        149      0.811      0.919      0.934      0.637
        pitted_surface         61         93      0.766      0.688      0.787      0.472
       rolled-in_scale         56        117      0.808       0.65      0.767       0.36
             scratches         54         94      0.692      0.851      0.906        0.5

image.gif

4.1.3 yolo11-MSCAAttention2.yaml

image.gif

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  - [-1, 1, MSCAAttention, []] # 17
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
  - [-1, 1, MSCAAttention, []] # 21
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 24 (P5/32-large)
  - [-1, 1, MSCAAttention, []] # 25
  - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)

image.gif

实验结果如下:

原始mAP50为0.768,改进3结构图为mAP50为0.775

YOLO11-MSCAAttention2 summary (fused): 265 layers, 2,719,066 parameters, 0 gradients, 6.6 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 21/21 [00:10<00:00,  1.98it/s]
                   all        324        747       0.72      0.717      0.775      0.413
               crazing         47        104      0.632      0.404      0.533      0.239
             inclusion         71        190      0.758      0.758       0.81       0.42
               patches         59        149      0.792      0.926      0.944      0.636
        pitted_surface         61         93       0.78       0.71      0.786      0.496
       rolled-in_scale         56        117      0.662       0.62      0.682      0.329
             scratches         54         94      0.698      0.884      0.894       0.36

image.gif

5.总结

遇到专栏的改进点如果存在涨点不明显或者掉点,建议将改进点放在网络不同位置进行可行性验证


原文链接:https://blog.csdn.net/m0_63774211/article/details/142790834




目录
打赏
0
0
0
0
12
分享
相关文章
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
87 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
48 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
68 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
HarmonyOS NEXT 实战系列10-网络通信
本文介绍了网络通信相关知识,包括HTTP协议的工作原理、鸿蒙系统中HTTP模块的使用方法、Promise异步操作处理机制及async/await语法糖的应用,以及JSON数据格式的语法规则与转换方法。重点讲解了HTTP请求响应流程、鸿蒙开发中的网络权限申请与代码实现、Promise三种状态及创建方式,并通过示例说明异步编程技巧和JSON在数据传递中的应用。
45 10
Hyper V上网实战:多虚拟机网络环境配置
在Hyper-V环境中配置多虚拟机网络以实现上网功能,需完成以下步骤:1. 确认Hyper-V安装与物理网络连接正常;2. 配置虚拟交换机(外部、内部或专用)以支持不同网络需求;3. 设置虚拟机网络适配器并关联对应虚拟交换机;4. 验证虚拟机网络连接状态;5. 根据场景需求优化多虚拟机网络环境。此外,还需注意网络隔离、性能监控及数据备份等事项,确保网络安全稳定运行。
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
118 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
72 11
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
105 17
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。