Opacus一款用于训练具有差分隐私的PyTorch模型的高速库

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Opacus一款用于训练具有差分隐私的PyTorch模型的高速库

bVbO84S.png


原作者:Davide Testuggine、Ilya Mironov,均为 Facebook AI 应用研究科学家

原文链接:https://ai.facebook.com/blog/...

Opacus是一个能够训练PyTorch模型的差分隐私的库。它支持在客户端上以最小的代码改动进行训练,对训练性能影响不大,并允许客户端在线跟踪任何给定时刻的隐私预算支出。这个代码版本是针对两个目标受众:ML从业者会发现这是一个温和的介绍,以训练一个具有微分隐私的模型,因为它需要最小的代码变化。差分隐私科学家会发现这很容易进行实验和修整,让他们专注于重要的事情。

Opacus是一种新的高速库,用于使用差分隐私(DP)训练PyTorch模型,该库比现有的最新方法更具可扩展性。差异隐私是用于量化敏感数据匿名化的严格数学框架。它通常用于分析中,并且对机器学习(ML)社区的兴趣日益浓厚。随着Opacus的发布,我们希望为研究人员和工程师提供一条更轻松的途径,以在ML中采用差异隐私,并加速该领域的DP研究。


Opacus提供:


  • 速度:通过利用PyTorch中的Autograd挂钩,Opacus可以计算成批的每个样本的梯度,与依赖微批处理的现有DP库相比,可将数量级的速度提速。
  • 安全:Opacus使用 密码安全的伪随机数生成器
  • 对其安全性至关重要的代码。这在GPU上高速处理了整批参数。
  • 灵活性:多亏了PyTorch,工程师和研究人员可以通过将我们的代码与PyTorch代码和纯Python代码进行混合和匹配来快速创建他们的想法的原型。
  • 生产力:Opacus随附教程,辅助功能,这些功能甚至可以在你开始培训之前就警告不兼容的图层以及自动重构机制。
  • 交互性:Opacus会跟踪你在任何给定时间点花费了多少隐私预算(DP中的核心数学概念),从而能够提早停止和实时监控。

Opacus通过引入PrivacyEngine抽象定义了一个轻量级的API,该抽象既可以跟踪你的隐私预算,也可以处理模型的渐变。你无需直接调用它即可运行,因为它已连接到标准PyTorch优化器。它在后台运行,使使用Opacus进行培训就像在培训代码的开头添加以下代码行一样容易:

model = Net()
optimizer = torch.optim.SGD(model.parameters(), lr=0.05)
privacy_engine = PrivacyEngine(
 model,
batch_size=32,
sample_size=len(train_loader.dataset),
alphas=range(2,32),
noise_multiplier=1.3,
max_grad_norm=1.0,
)
privacy_engine.attach(optimizer)
That's it! Now it's business as usual

训练后,生成的工件是标准的PyTorch模型,没有额外的步骤或部署私有模型的障碍:如果你今天可以部署模型,则可以在使用DP对其进行了训练之后进行部署,而无需更改任何代码。

Opacus库还包括经过预先训练和微调的模型,针对大型模型的教程以及为隐私研究实验而设计的基础结构。


使用Opacus实现高速隐私培训


我们与Opacus的目标是保留每个训练样本的隐私,同时限制对最终模型准确性的影响。

Opacus通过修改标准的PyTorch优化器来做到这一点,以便在训练过程中实施(和测量)DP。

更具体地说,我们的方法集中在差分私有随机梯度下降(DP-SGD)上。

该算法背后的核心思想是,我们可以通过干预模型用来更新权重的参数梯度(而不是直接获取数据)来保护训练数据集的隐私。通过在每次迭代中将噪声添加到梯度中,我们可以防止模型记住其训练示例,同时仍可进行汇总学习。(无偏的)噪声自然会在训练过程中看到的许多批次中抵消。

但是,增加噪声需要微妙的平衡:过多的噪声会破坏信号,而过少的噪声将无法保证隐私。为了确定合适的比例,我们看一下梯度的范数。限制每个样本对梯度的贡献很重要,因为离群值比大多数样本具有更大的梯度。我们需要确保这些异常值的私密性,尤其是因为它们极有可能被模型记住。为此,我们在一个小批处理中计算每个样本的梯度。我们分别裁剪梯度,将其累积回单个梯度张量,然后将噪声添加到总和中。

这种基于样本的计算是构建Opacus的最大障碍之一。与PyTorch的典型操作相比,它更具挑战性,自动毕业计算整个批次的梯度张量,因为这对于所有其他ML用例都是有意义的,并且可以优化性能。为了克服这个问题,我们使用了高效技术训练标准神经网络时获得所有所需的梯度向量。对于模型参数,我们单独返回给定批次中每个示例的损失梯度。

这是Opacus工作流程的图表,我们在其中计算每个样本的梯度。

通过在运行各层时跟踪一些中间数量,我们可以使用适合内存的任何批次大小进行训练,从而使我们的方法比其他软件包中使用的替代微批次方法快一个数量级。


隐私保护机器学习的重要性


安全社区鼓励安全关键代码的开发人员使用少量经过仔细审查和专业维护的库。通过允许应用程序开发人员专注于他们最了解的事情:构建出色的产品,这种“不自行加密”的原则有助于最大程度地减少攻击面。随着ML的应用和研究不断加速,对于ML研究人员而言,重要的是使用易于使用的工具来获得数学上严格的隐私保证,而不会拖慢培训过程。

我们希望通过开发Opacus等PyTorch工具,使对此类隐私保护资源的访问民主化。我们正在使用PyTorch更快,更灵活的平台弥合安全社区和一般ML工程师之间的鸿沟。


建筑社区


在过去的几年中,隐私保护机器学习(PPML)社区得到了快速发展。我们为Opacus周围已经形成的生态系统感到兴奋,我们的主要贡献者之一是OpenMined,这是一个由数千名开发人员组成的社区,他们正在构建以隐私为中心的应用。并利用许多PyTorch构建块为PySyft和PyGrid提供基础,以实现差异化隐私和联合学习。作为合作的一部分,Opacus将成为OpenMined库(例如PySyft)的依赖项。我们期待继续我们的合作,并进一步扩大社区。

Opacus是Facebook AI促进工作进步的更广泛努力的一部分安全发展 计算技术用于机器学习和负责任的人工智能。总体而言,这是将来将其领域转向构建隐私优先系统的重要踏脚石。



开源地址:https://github.com/pytorch/op...


目录
相关文章
|
3月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
432 2
|
14天前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
68 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
50 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
3月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
89 7
利用 PyTorch Lightning 搭建一个文本分类模型
|
3月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
169 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
4月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
178 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
4月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
252 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
4月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
60 3
PyTorch 模型调试与故障排除指南
|
3月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
5月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
201 4

热门文章

最新文章