探索PyTorch:模型的定义和保存方法

简介: 探索PyTorch:模型的定义和保存方法

🍔 模型定义方法

学习目标

🍀 掌握PyTorch构建线性回归相关api


💘 使用PyTorch构建线性回归

前面我们使用手动的方式来构建了一个简单的线性回归模型,如果碰到一些较大的网络设计,手动构建过于繁琐。所以,我们需要学会使用 PyTorch 的各个组件来搭建网络。

接下来,我们使用 PyTorch 提供的接口来定义线性回归:

🍭 使用 PyTorch 的 nn.MSELoss() 代替自定义的平方损失函数

🍭 使用 PyTorch 的 data.DataLoader 代替自定义的数据加载器

🍭 使用 PyTorch 的 optim.SGD 代替自定义的优化器

🍭 使用 PyTorch 的 nn.Linear 代替自定义的假设函数

使用 PyTorch 来构建线性回归,直接上代码演示💯 :

import torch
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
# 构建数据集
def create_dataset():
    x, y, coef = make_regression(n_samples=100,
                                 n_features=1,
                                 noise=10,
                                 coef=True,
                                 bias=14.5,
                                 random_state=0)
    # 将构建数据转换为张量类型
    x = torch.tensor(x)
    y = torch.tensor(y)
    return x, y, coef
def train():
    # 构建数据集
    x, y, coef = create_dataset()
    # 构建数据集对象
    dataset = TensorDataset(x, y)
    # 构建数据加载器
    dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
    # 构建模型
    model = nn.Linear(in_features=1, out_features=1)
    # 构建损失函数
    criterion = nn.MSELoss()
    # 优化方法
    optimizer = optim.SGD(model.parameters(), lr=1e-2)
    # 初始化训练参数
    epochs = 100
    for _ in range(epochs):
        for train_x, train_y in dataloader:
            # 将一个batch的训练数据送入模型
            y_pred = model(train_x.type(torch.float32))
            # 计算损失值
            loss = criterion(y_pred, train_y.reshape(-1, 1).type(torch.float32))
            # 梯度清零
            optimizer.zero_grad()
            # 自动微分(反向传播)
            loss.backward()
            # 更新参数
            optimizer.step()
    # 绘制拟合直线
    plt.scatter(x, y)
    x = torch.linspace(x.min(), x.max(), 1000)
    y1 = torch.tensor([v * model.weight + model.bias for v in x])
    y2 = torch.tensor([v * coef + 14.5 for v in x])
    plt.plot(x, y1, label='训练')
    plt.plot(x, y1, label='真实')
    plt.grid()
    plt.legend()
    plt.show()
if __name__ == '__main__':
    train()

程序运行结果:

从程序运行结果来看,我们绘制一条拟合的直线,和原始数据的直线基本吻合,说明我们训练的还不错。

🍔 模型的保存方法

学习目标

🍀 掌握PyTorch保存模型的方法

神经网络的训练有时需要几天、几周、甚至几个月,为了在每次使用模型时避免高代价的重复训练,我们就需要将模型序列化到磁盘中,使用的时候反序列化到内存中。

PyTorch 提供了两种保存模型的方法:

🐼 直接序列化模型对象

🐼 存储模型的网络参数

💘 直接序列化模型对象

import torch
import torch.nn as nn
import pickle
class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.linear1 = nn.Linear(input_size, input_size * 2)
        self.linear2 = nn.Linear(input_size * 2, output_size)
    def forward(self, inputs):
        inputs = self.linear1(inputs)
        output = self.linear2(inputs)
        return output
def test01():
    model = Model(128, 10)
    # 第一个参数: 存储的模型
    # 第二个参数: 存储的路径
    # 第三个参数: 使用的模块
    # 第四个参数: 存储的协议
    torch.save(model, 'model/test_model_save.pth', pickle_module=pickle, pickle_protocol=2)
def test02():
    # 第一个参数: 加载的路径
    # 第二个参数: 模型加载的设备
    # 第三个参数: 加载的模块
    model = torch.load('model/test_model_save.pth', map_location='cpu', pickle_module=pickle)
if __name__ == '__main__':
    test01()
    test02()

Python 的 Pickle 序列化协议有多种,详细可查看官网: Welcome to Python.org

注意: 当我们训练的模型在 GPU 中时,torch.save 函数将其存储到磁盘中。当再次加载该模型时,会将该模型从磁盘先加载到 CPU 中,再移动到指定的 GPU 中,例如: cuda:0、cuda:1。但是,当重新加载的机器不存在 GPU 时,模型加载可能会出错,这时,可通过 map_localtion=’CPU’ 将其加载到 CPU 中。

💘 存储模型的网络参数

import torch
import torch.nn as nn
import torch.optim as optim
class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.linear1 = nn.Linear(input_size, input_size * 2)
        self.linear2 = nn.Linear(input_size * 2, output_size)
    def forward(self, inputs):
        inputs = self.linear1(inputs)
        output = self.linear2(inputs)
        return output
def test01():
    model = Model(128, 10)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    # 定义存储参数
    save_params = {
        'init_params': {
            'input_size': 128,
            'output_size': 10
        },
        'acc_score': 0.98,
        'avg_loss': 0.86,
        'iter_numbers': 100,
        'optim_params': optimizer.state_dict(),
        'model_params': model.state_dict()
    }
    # 存储模型参数
    torch.save(save_params, 'model/model_params.pth')
def test02():
    # 加载模型参数
    model_params = torch.load('model/model_params.pth')
    # 初始化模型
    model = Model(model_params['init_params']['input_size'], model_params['init_params']['output_size'])
    # 初始化优化器
    optimizer = optim.Adam(model.parameters())
    optimizer.load_state_dict(model_params['optim_params'])
    # 显示其他参数
    print('迭代次数:', model_params['iter_numbers'])
    print('准确率:', model_params['acc_score'])
    print('平均损失:', model_params['avg_loss'])
if __name__ == '__main__':
    test01()
    test02()

在上面代码中,我们把模型的一些初始化参数、模型的权重参数、训练的迭代次数、以及优化器的参数等都进行了存储。

💘 小节

本小节主要学习了如何定义和保存网络模型。我们可以直接存储模型对象,但是该方法依赖于 PyTorch 的实现,而存储模型参数与 PyTorch 的实现关系较弱,建议使用第二种方法来存储模型。

文章知识点与官方知识档案匹配,可进一步学习相关知识


相关文章
|
5月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
422 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
4月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
6月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
403 9
|
8月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
362 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
263 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
|
9月前
|
机器学习/深度学习 PyTorch 编译器
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。
1055 17
|
10月前
|
存储 自然语言处理 PyTorch
从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
近期发布的LLaMA 4模型引入混合专家(MoE)架构,以提升效率与性能。尽管社区对其实际表现存在讨论,但MoE作为重要设计范式再次受到关注。本文通过Pytorch从零实现简化版LLaMA 4 MoE模型,涵盖数据准备、分词、模型构建(含词元嵌入、RoPE、RMSNorm、多头注意力及MoE层)到训练与文本生成全流程。关键点包括MoE层实现(路由器、专家与共享专家)、RoPE处理位置信息及RMSNorm归一化。虽规模小于实际LLaMA 4,但清晰展示MoE核心机制:动态路由与稀疏激活专家,在控制计算成本的同时提升性能。完整代码见链接,基于FareedKhan-dev的Github代码修改而成。
461 9
从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
|
9月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
本文详细讲解了如何在昇腾平台上使用PyTorch训练推荐系统中的经典模型DIN(Deep Interest Network)。主要内容包括:DIN网络的创新点与架构剖析、Activation Unit和Attention模块的实现、Amazon-book数据集的介绍与预处理、模型训练过程定义及性能评估。通过实战演示,利用Amazon-book数据集训练DIN模型,最终评估其点击率预测性能。文中还提供了代码示例,帮助读者更好地理解每个步骤的实现细节。

推荐镜像

更多