【智能优化算法】基于改进鲸鱼算法HIWOA求解单目标优化问题附matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【智能优化算法】基于改进鲸鱼算法HIWOA求解单目标优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Aiming at the problems that whale optimization algorithm is easy to fall into local optimal, slow convergence speed and low accuracy in the complex environment of multi-variable processing, it has always been challenging in practical application. In this paper, a new hybrid modified whale optimization algorithm (HIWOA) is proposed, which adds a new feedback mechanism to improve population diversity and reduce the possibility of falling into local optimization. The nonlinear convergence factor and inertia weight coefficient are used to improve the updating of whale individual position and improve the speed of convergence and accuracy. Simulation experiments were carried out on 23 benchmark functions, and the results showed that compared with the original WOA algorithm and the other three improved algorithms in the last two years, the HIWOA algorithm was more competitive in accuracy of solution, convergence speed and stability.

⛄ 部分代码

%_________________________________________________________________________%

% 鲸鱼优化算法             %

%_________________________________________________________________________%

% The Whale Optimization Algorithm

function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


% initialize position vector and score for the leader

Leader_pos=zeros(1,dim);

Leader_score=inf; %change this to -inf for maximization problems



%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);


Convergence_curve=zeros(1,Max_iter);


t=0;% Loop counter


% Main loop

while t<Max_iter

   for i=1:size(Positions,1)

       

       % Return back the search agents that go beyond the boundaries of the search space

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;

       

       % Calculate objective function for each search agent

       fitness=fobj(Positions(i,:));

       

       % Update the leader

       if fitness<Leader_score % Change this to > for maximization problem

           Leader_score=fitness; % Update alpha

           Leader_pos=Positions(i,:);

       end

       

   end

   

   a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)

   

   % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)

   a2=-1+t*((-1)/Max_iter);

   

   % Update the Position of search agents

   for i=1:size(Positions,1)

       r1=rand(); % r1 is a random number in [0,1]

       r2=rand(); % r2 is a random number in [0,1]

       

       A=2*a*r1-a;  % Eq. (2.3) in the paper

       C=2*r2;      % Eq. (2.4) in the paper

       

       

       b=1;               %  parameters in Eq. (2.5)

       l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)

       

       p = rand();        % p in Eq. (2.6)

       

       for j=1:size(Positions,2)

           

           if p<0.5  

               if abs(A)>=1

                   rand_leader_index = floor(SearchAgents_no*rand()+1);

                   X_rand = Positions(rand_leader_index, :);

                   D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)

                   Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)

                   

               elseif abs(A)<1

                   D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)

                   Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)

               end

               

           elseif p>=0.5

             

               distance2Leader=abs(Leader_pos(j)-Positions(i,j));

               % Eq. (2.5)

               Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);

               

           end

           

       end

   end

   t=t+1;

   Convergence_curve(t)=Leader_score;

end

⛄ 运行结果

⛄ 参考文献

[1] Tang C ,  Sun W ,  Wu W , et al. A hybrid improved whale optimization algorithm[C]// 2019 IEEE 15th International Conference on Control and Automation (ICCA). IEEE, 2019.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
16天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
10天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
121 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码