【优化分配】基于粒子群算法和萤火虫算法求解二次分配优化问题附matlab代码

简介: 【优化分配】基于粒子群算法和萤火虫算法求解二次分配优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对当前火力分配(WTA)的难题,论文提出了一种基于粒子群优化算法(PSO)和萤火虫算法火力分配优化方法.介绍了算法的具体实现步骤,并通过在计算机上进行MATLAB仿真实验,验证了此方法的可行性和科学性,是一种有益的尝试与探索,对现代战争中指挥决策和理论研究有一定的参考价值.

⛄ 部分代码

%



clc;

clear;

close all;


%% Problem Definition


model=CreateModel();


CostFunction=@(s) MyCost(s, model);        % Cost Function


nVar=model.m;       % Number of Decision Variables


VarSize=[1 nVar];   % Size of Decision Variables Matrix


VarMin=0;         % Lower Bound of Variables

VarMax=1;         % Upper Bound of Variables



%% PSO Parameters


MaxIt=1000;      % Maximum Number of Iterations


nPop=80;         % Population Size (Swarm Size)


% PSO Parameters

w=1;            % Inertia Weight

wdamp=0.99;     % Inertia Weight Damping Ratio

c1=1.5;         % Personal Learning Coefficient

c2=2.0;         % Global Learning Coefficient


% Velocity Limits

VelMax=0.1*(VarMax-VarMin);

VelMin=-VelMax;


nParticleMutation = 1;      % Number of Mutations Performed on Each Particle

nGlobalBestMutation = 3;    % Number of Mutations Performed on Global Best


%% Initialization


empty_particle.Position=[];

empty_particle.Cost=[];

empty_particle.Sol=[];

empty_particle.Velocity=[];

empty_particle.Best.Position=[];

empty_particle.Best.Cost=[];

empty_particle.Best.Sol=[];


particle=repmat(empty_particle,nPop,1);


GlobalBest.Cost=inf;


for i=1:nPop

   

   % Initialize Position

   particle(i).Position=unifrnd(VarMin,VarMax,VarSize);

   

   % Initialize Velocity

   particle(i).Velocity=zeros(VarSize);

   

   % Evaluation

   [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position);

   

   % Update Personal Best

   particle(i).Best.Position=particle(i).Position;

   particle(i).Best.Cost=particle(i).Cost;

   particle(i).Best.Sol=particle(i).Sol;

   

   % Update Global Best

   if particle(i).Best.Cost<GlobalBest.Cost

       GlobalBest=particle(i).Best;

   end

   

end


BestCost=zeros(MaxIt,1);


%% PSO Main Loop


for it=1:MaxIt

   

   for i=1:nPop

       

       % Update Velocity

       particle(i).Velocity = w*particle(i).Velocity ...

           +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...

           +c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position);

       

       % Apply Velocity Limits

       particle(i).Velocity = max(particle(i).Velocity,VelMin);

       particle(i).Velocity = min(particle(i).Velocity,VelMax);

       

       % Update Position

       particle(i).Position = particle(i).Position + particle(i).Velocity;

       

       % Velocity Mirror Effect

       IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);

       particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);

       

       % Apply Position Limits

       particle(i).Position = max(particle(i).Position,VarMin);

       particle(i).Position = min(particle(i).Position,VarMax);

       

       % Evaluation

       [particle(i).Cost, particle(i).Sol] = CostFunction(particle(i).Position);

       

       % Perform Mutation

       for j=1:nParticleMutation

           NewParticle = particle(i);

           NewParticle.Position = Mutate(particle(i).Position);

           [NewParticle.Cost, NewParticle.Sol] = CostFunction(NewParticle.Position);

           if NewParticle.Cost <= particle(i).Cost

               particle(i) = NewParticle;

           end

       end

       

       % Update Personal Best

       if particle(i).Cost<particle(i).Best.Cost

           

           particle(i).Best.Position=particle(i).Position;

           particle(i).Best.Cost=particle(i).Cost;

           particle(i).Best.Sol=particle(i).Sol;

           

           % Update Global Best

           if particle(i).Best.Cost<GlobalBest.Cost

               GlobalBest=particle(i).Best;

           end

           

       end

       

   end

   

   % Perform Mutation on Global Best

   for i=1:nGlobalBestMutation

       NewParticle = GlobalBest;

       NewParticle.Position = Mutate(GlobalBest.Position);

       [NewParticle.Cost, NewParticle.Sol] = CostFunction(NewParticle.Position);

       if NewParticle.Cost <= GlobalBest.Cost

           GlobalBest = NewParticle;

       end

   end

   

   

   BestCost(it)=GlobalBest.Cost;

   

   disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);

   

   w=w*wdamp;

   

   figure(1);

   PlotSolution(GlobalBest.Position, model);

   pause(0.01);

   

end


BestSol = GlobalBest;


%% Results


figure;

plot(BestCost,'LineWidth',2);

xlabel('迭代次数');

ylabel('最优值');

grid on;


⛄ 运行结果

⛄ 参考文献

[1] 王光源, 徐鹏飞, 赵勇. 基于粒子群优化算法求解火力分配问题[J]. 舰船电子工程, 2013, 33(11):34-36.

[2] 周洪斌, 吕强. 利用混合粒子群优化算法求解二次分配问题[J]. 计算机应用与软件, 2009, 26(11):3.

[3] 朱渊萍, 陈素芬. 萤火虫群优化算法在公差分配优化的应用[J]. 机械设计与制造, 2014(6):3.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
213 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
147 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
159 8
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
141 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
126 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
114 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
109 0
|
2月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
144 8
|
2月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)

热门文章

最新文章