【优化分配】基于粒子群算法和萤火虫算法求解二次分配优化问题附matlab代码

简介: 【优化分配】基于粒子群算法和萤火虫算法求解二次分配优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对当前火力分配(WTA)的难题,论文提出了一种基于粒子群优化算法(PSO)和萤火虫算法火力分配优化方法.介绍了算法的具体实现步骤,并通过在计算机上进行MATLAB仿真实验,验证了此方法的可行性和科学性,是一种有益的尝试与探索,对现代战争中指挥决策和理论研究有一定的参考价值.

⛄ 部分代码

%



clc;

clear;

close all;


%% Problem Definition


model=CreateModel();


CostFunction=@(s) MyCost(s, model);        % Cost Function


nVar=model.m;       % Number of Decision Variables


VarSize=[1 nVar];   % Size of Decision Variables Matrix


VarMin=0;         % Lower Bound of Variables

VarMax=1;         % Upper Bound of Variables



%% PSO Parameters


MaxIt=1000;      % Maximum Number of Iterations


nPop=80;         % Population Size (Swarm Size)


% PSO Parameters

w=1;            % Inertia Weight

wdamp=0.99;     % Inertia Weight Damping Ratio

c1=1.5;         % Personal Learning Coefficient

c2=2.0;         % Global Learning Coefficient


% Velocity Limits

VelMax=0.1*(VarMax-VarMin);

VelMin=-VelMax;


nParticleMutation = 1;      % Number of Mutations Performed on Each Particle

nGlobalBestMutation = 3;    % Number of Mutations Performed on Global Best


%% Initialization


empty_particle.Position=[];

empty_particle.Cost=[];

empty_particle.Sol=[];

empty_particle.Velocity=[];

empty_particle.Best.Position=[];

empty_particle.Best.Cost=[];

empty_particle.Best.Sol=[];


particle=repmat(empty_particle,nPop,1);


GlobalBest.Cost=inf;


for i=1:nPop

   

   % Initialize Position

   particle(i).Position=unifrnd(VarMin,VarMax,VarSize);

   

   % Initialize Velocity

   particle(i).Velocity=zeros(VarSize);

   

   % Evaluation

   [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position);

   

   % Update Personal Best

   particle(i).Best.Position=particle(i).Position;

   particle(i).Best.Cost=particle(i).Cost;

   particle(i).Best.Sol=particle(i).Sol;

   

   % Update Global Best

   if particle(i).Best.Cost<GlobalBest.Cost

       GlobalBest=particle(i).Best;

   end

   

end


BestCost=zeros(MaxIt,1);


%% PSO Main Loop


for it=1:MaxIt

   

   for i=1:nPop

       

       % Update Velocity

       particle(i).Velocity = w*particle(i).Velocity ...

           +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...

           +c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position);

       

       % Apply Velocity Limits

       particle(i).Velocity = max(particle(i).Velocity,VelMin);

       particle(i).Velocity = min(particle(i).Velocity,VelMax);

       

       % Update Position

       particle(i).Position = particle(i).Position + particle(i).Velocity;

       

       % Velocity Mirror Effect

       IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);

       particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);

       

       % Apply Position Limits

       particle(i).Position = max(particle(i).Position,VarMin);

       particle(i).Position = min(particle(i).Position,VarMax);

       

       % Evaluation

       [particle(i).Cost, particle(i).Sol] = CostFunction(particle(i).Position);

       

       % Perform Mutation

       for j=1:nParticleMutation

           NewParticle = particle(i);

           NewParticle.Position = Mutate(particle(i).Position);

           [NewParticle.Cost, NewParticle.Sol] = CostFunction(NewParticle.Position);

           if NewParticle.Cost <= particle(i).Cost

               particle(i) = NewParticle;

           end

       end

       

       % Update Personal Best

       if particle(i).Cost<particle(i).Best.Cost

           

           particle(i).Best.Position=particle(i).Position;

           particle(i).Best.Cost=particle(i).Cost;

           particle(i).Best.Sol=particle(i).Sol;

           

           % Update Global Best

           if particle(i).Best.Cost<GlobalBest.Cost

               GlobalBest=particle(i).Best;

           end

           

       end

       

   end

   

   % Perform Mutation on Global Best

   for i=1:nGlobalBestMutation

       NewParticle = GlobalBest;

       NewParticle.Position = Mutate(GlobalBest.Position);

       [NewParticle.Cost, NewParticle.Sol] = CostFunction(NewParticle.Position);

       if NewParticle.Cost <= GlobalBest.Cost

           GlobalBest = NewParticle;

       end

   end

   

   

   BestCost(it)=GlobalBest.Cost;

   

   disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);

   

   w=w*wdamp;

   

   figure(1);

   PlotSolution(GlobalBest.Position, model);

   pause(0.01);

   

end


BestSol = GlobalBest;


%% Results


figure;

plot(BestCost,'LineWidth',2);

xlabel('迭代次数');

ylabel('最优值');

grid on;


⛄ 运行结果

⛄ 参考文献

[1] 王光源, 徐鹏飞, 赵勇. 基于粒子群优化算法求解火力分配问题[J]. 舰船电子工程, 2013, 33(11):34-36.

[2] 周洪斌, 吕强. 利用混合粒子群优化算法求解二次分配问题[J]. 计算机应用与软件, 2009, 26(11):3.

[3] 朱渊萍, 陈素芬. 萤火虫群优化算法在公差分配优化的应用[J]. 机械设计与制造, 2014(6):3.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


目录
打赏
0
1
0
0
838
分享
相关文章
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
205 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
113 15
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
106 1
|
7月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
284 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
169 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
146 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章