【SVM回归预测】基于日特征气象因素的支持向量机实现电力负荷预测附Matlab代码

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 【SVM回归预测】基于日特征气象因素的支持向量机实现电力负荷预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

短期负荷预测是电力系统调度和计划部门安排购电计划和制定运行方式的基础,是保障电力系统安全,经济运行的重要手段.支持向量机(Support Vector Machine, SVM)是近期提出的一种机器学习方法,它具有严格的数学理论基础,有着比人工神经网络更优越的性能.本文将SVM引入到短期负荷预测中,结合具体实例,验证了该方法的可行性和有效性. 论文首先综述了短期负荷预测的研究现状,归纳了常用的预测模型和方法,并分析了各种方法的优劣;接着详细介绍了SVM的理论基础和原理,推导了SVM的回归模型,之后将SVM引入到短期负荷预测,从预测流程,样本构造,参数选择,训练算法等方面进行了细致的研究;在此基础上,结合具体实例,选取基于日特征气象因素的支持向量机预测方法,用Matlab编制模型的算法程序,从数据集中选取若干天数的历史数据作为模型的训练集,其余的数据作为测试集,模型最终能够实现对测试集中不同日期的负荷大小预测.

⛄ 部分代码

function [mse,bestc,bestg] = SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)

%SVMcg cross validation by faruto

%

% by faruto

%Email:patrick.lee@foxmail.com QQ:516667408 http://blog.sina.com.cn/faruto

%last modified 2011.06.08

%

% 若转载请注明:

% faruto and liyang , LIBSVM-farutoUltimateVersion

% a toolbox with implements for support vector machines based on libsvm, 2011.

% Software available at http://www.matlabsky.com

%

% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for

% support vector machines, 2001. Software available at

% http://www.csie.ntu.edu.tw/~cjlin/libsvm

%% about the parameters of SVMcg

if nargin < 10

   msestep = 0.06;

end

if nargin < 8

   cstep = 0.8;

   gstep = 0.8;

end

if nargin < 7

   v = 5;

end

if nargin < 5

   gmax = 8;

   gmin = -8;

end

if nargin < 3

   cmax = 8;

   cmin = -8;

end

%% X:c Y:g cg:acc

[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);

[m,n] = size(X);

cg = zeros(m,n);


eps = 10^(-4);


%% record acc with different c & g,and find the bestacc with the smallest c

bestc = 0;

bestg = 0;

mse = Inf;

basenum = 2;

for i = 1:m

   for j = 1:n

       cmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) ),' -s 3 -p 0.01'];

       cg(i,j) = svmtrain(train_label, train, cmd);

       

       if cg(i,j) < mse

           mse = cg(i,j);

           bestc = basenum^X(i,j);

           bestg = basenum^Y(i,j);

       end

       

       if abs( cg(i,j)-mse )<=eps && bestc > basenum^X(i,j)

           mse = cg(i,j);

           bestc = basenum^X(i,j);

           bestg = basenum^Y(i,j);

       end

       

   end

end

%% to draw the acc with different c & g

[cg,ps] = mapminmax(cg,0,1);

figure;

[C,h] = contour(X,Y,cg,0:msestep:0.5);

clabel(C,h,'FontSize',10,'Color','r');

xlabel('log2c','FontSize',12);

ylabel('log2g','FontSize',12);

firstline = 'SVR参数选择结果图(等高线图)[GridSearchMethod]';

secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...

   ' CVmse=',num2str(mse)];

title({firstline;secondline},'Fontsize',12);

grid on;


figure;

meshc(X,Y,cg);

% mesh(X,Y,cg);

% surf(X,Y,cg);

axis([cmin,cmax,gmin,gmax,0,1]);

xlabel('log2c','FontSize',12);

ylabel('log2g','FontSize',12);

zlabel('mse','FontSize',12);

firstline = 'SVR参数选择结果图(3D视图)[GridSearchMethod]';

secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...

   ' CVmse=',num2str(mse)];

title({firstline;secondline},'Fontsize',12);

⛄ 运行结果

⛄ 参考文献

[1]蔡勇. 基于支持向量机的短期电力负荷预测研究[D]. 华中科技大学, 2007.

[2]封磊. 基于"三峰三谷"变化趋势的电力负荷预测方法研究.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
7月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
253 73
|
5月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
6月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
8月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
331 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
8月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
277 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
200 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
11月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
11月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章

下一篇
oss创建bucket