基于贝叶斯优化卷积神经网络结合长短记忆CNN-LSTM混合神经网络实现数据回归预测附Matlab代码

简介: 基于贝叶斯优化卷积神经网络结合长短记忆CNN-LSTM混合神经网络实现数据回归预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

考虑到气象因素对电力短期负荷预测精度存在影响,提出了一套贝叶斯优化卷积神经网络和长短期记忆神经网络(BO-CNN-LSTM)组合预测模型.通过贝叶斯优化算法优选出全局最优参数组合,再采用优选出的五类气象因素数据(日最高温度,日最低温度,日平均温度,日平均相对湿度,降雨量)以及实际电力负荷数据作为输入特征量对优化后的LSTM神经网络进行训练.最后对某地区的电力负荷数据进行预测分析,并与不同方法对比分析,证明了考虑气象因素后的BO-CNN-LSTM神经网络预测精度高,可以作为可靠的短期电力负荷预测工具.

⛄ 部分代码

clc;clear;close all;format compact

%%

data=xlsread('PA.xls','机组A风功率实测数据','B2:CS29')';

data=data(:);

% 头一天的29个值与预测日的5个气象值作为输入,预测日的24个负荷值做输出

n=96;

[x,y]=data_process(data,n);%前n个时刻 预测下一个时刻

%%

[m,n]=size(true_value);

true_value=reshape(true_value',[1,m*n]);

predict_value=reshape(predict_value',[1,m*n]);

disp('结果分析')

rmse=sqrt(mean((true_value-predict_value).^2));

disp(['根均方差(RMSE):',num2str(rmse)])


mae=mean(abs(true_value-predict_value));

disp(['平均绝对误差(MAE):',num2str(mae)])


mape=mean(abs((true_value-predict_value)./true_value));

disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])


fprintf('\n')


%

figure

plot(true_value)

hold on

plot(predict_value)

legend('实际值','预测值')


⛄ 运行结果

⛄ 参考文献

[1]胡晓丽, 张会兵, 董俊超,等. 基于CNN-LSTM的用户购买行为预测模型[J]. 计算机应用与软件, 2020, 37(6):6.

[2]肖世钊, 刘天恒, 张飞,等. 基于卷积神经网络与长短期记忆网络的多规格带钢精轧电耗分析预测[J]. 冶金自动化.

[3]邱凯旋, 李佳. 基于贝叶斯优化和长短期记忆神经网络(BO-LSTM)的短期电力负荷预测[J]. 电力学报, 2022, 37(5):7.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
6月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
111 6
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
5月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
4月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
4月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
180 2
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。

热门文章

最新文章